Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS One ; 18(3): e0275734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943839

RESUMO

The analysis of phyllosphere microbiomes traditionally relied on DNA extracted from whole leaves. To investigate the microbial communities on the adaxial (upper) and abaxial (lower) leaf surfaces, swabs were collected from both surfaces of two garden plants, Rhapis excelsa and Cordyline fruticosa. Samples were collected at noon and midnight and at five different locations to investigate if the phyllosphere microbial communities change with time and location. The abaxial surface of Rhapis excelsa and Cordyline fruticosa had fewer bacteria in contrast to its adaxial counterpart. This observation was consistent between noon and midnight and across five different locations. Our co-occurrence network analysis further showed that bacteria were found almost exclusively on the adaxial surface while only a small group of leaf blotch fungi thrived on the abaxial surface. There are higher densities of stomata on the abaxial surface and these openings are vulnerable ports of entry into the plant host. While one might argue about the settling of dust particles and microorganisms on the adaxial surface, we detected differences in reactive chemical activities and microstructures between the adaxial and abaxial surfaces. Our results further suggest that both plant species deploy different defence strategies to deter invading pathogens on the abaxial surface. We hypothesize that chemical and mechanical defence strategies evolved independently for harnessing and controlling phyllosphere microbiomes. Our findings have also advanced our understanding that the abaxial leaf surface is distinct from the adaxial surface and that the reduced microbial diversity is likely a consequence of plant-microbe interactions.


Assuntos
Folhas de Planta , Folhas de Planta/química
2.
NanoImpact ; 22: 100325, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559961

RESUMO

Toner-based printing equipment (TPE), including laser printers and photocopiers, utilize several engineered nanomaterials (ENMs) to improve toner performance. Operation of TPE, which rarely employ any exposure controls, generates high exposures to nanoparticles that contain ENMs and complex organics. Epidemiological literature in copier operators documents respiratory effects, including nasal blockage, cough, excessive sputum, and breathing difficulties, cardiovascular effects, oxidative stress, and inflammation. However, epidemiological studies in humans with adequate exposure assessment and dose-response analysis are lacking. We present herein the analysis of the upper airway and systemic inflammation in plasma of 19 healthy copier operators at six Singapore workplaces. We employed a repeated panel design (four biomarker measurements over two weeks) combined with a multi-marker approach (14 inflammatory cytokines in plasma and nasal lavage (NL)), and comprehensive exposure assessment using four distinct exposure metrics. We investigated spatial and temporal patterns of markers of upper airway and systemic inflammation and their association with various exposure metrics. Several inflammatory markers, namely fractalkine, IL-1ß, and IL-1α in NL, and fractalkine, IL-1ß, TNF-α, and IFN-γ in plasma, were strongly and positively associated with at least one exposure metric, whereas GM-CSF was negatively associated. The inflammation score was also strongly associated with TPE nanoparticle exposures. Exposure to TPE emissions induced moderate upper airway inflammation and stronger systemic inflammation in these healthy operators, characterized by upregulation of at least IL-1ß, fractalkine, TNF-α and IFN-γ. Proinflammatory cytokines TNF-α, IFN-γ and IL-1ß play an important role in orchestrating inflammatory responses in various clinical conditions, including cardiovascular and autoimmune disease, and likely trigger activation of endothelial cells, leading to overexpression of fractalkine, a chemokine that is involved in and associated with multiple disorders, including atherosclerosis and vascular disease. Future larger-scale epidemiological studies in these workers and consumers exposed chronically to TPE nanoparticle emissions and proactive interventions to reduce or eliminate TPE exposures are recommended.


Assuntos
Inflamação , Exposição Ocupacional , Doenças Respiratórias , Biomarcadores/sangue , Citocinas/sangue , Células Endoteliais , Humanos , Inflamação/induzido quimicamente , Inflamação/epidemiologia , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/epidemiologia , Singapura/epidemiologia , Local de Trabalho
3.
Int J Mol Sci ; 21(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357408

RESUMO

BACKGROUND: Prior studies illustrate the presence and clinical importance of detecting Aspergillus species in the airways of patients with chronic respiratory disease. Despite this, a low fungal biomass and the presence of PCR inhibitors limits the usefulness of quantitative PCR (qPCR) for accurate absolute quantification of Aspergillus in specimens from the human airway. Droplet digital PCR (ddPCR) however, presents an alternative methodology allowing higher sensitivity and accuracy of such quantification but remains to be evaluated in head-to-head fashion using specimens from the human airway. Here, we implement a standard duplex TaqMan PCR protocol, and assess if ddPCR is superior in quantifying airway Aspergillus when compared to standard qPCR. METHODS: The molecular approaches of qPCR and ddPCR were applied to DNA fungal extracts in n = 20 sputum specimens obtained from non-diseased (n = 4), chronic obstructive pulmonary disease (COPD; n = 8) and non-cystic fibrosis bronchiectasis (n = 8) patients where Aspergillus status was known. DNA was extracted and qPCR and ddPCR performed on all specimens with appropriate controls and head-to-head comparisons performed. RESULTS: Standard qPCR and ddPCR were both able to detect, even at low abundance, Aspergillus species (Aspergillus fumigatus - A. fumigatus and Aspergillus terreus - A. terreus) from specimens known to contain the respective fungi. Importantly, however, ddPCR was superior for the detection of A. terreus particularly when present at very low abundance and demonstrates greater resistance to PCR inhibition compared to qPCR. CONCLUSION: ddPCR has greater sensitivity for A. terreus detection from respiratory specimens, and is more resistant to PCR inhibition, important attributes considering the importance of A. terreus species in chronic respiratory disease states such as bronchiectasis.


Assuntos
Aspergillus/isolamento & purificação , Bronquiectasia/microbiologia , Reação em Cadeia da Polimerase/métodos , Aspergilose Pulmonar/diagnóstico , Doença Pulmonar Obstrutiva Crônica/microbiologia , Idoso , Aspergillus/genética , Carga Bacteriana , Estudos de Casos e Controles , DNA Fúngico/genética , Diagnóstico Precoce , Feminino , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Escarro/microbiologia
4.
Chest ; 158(2): 512-522, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32184111

RESUMO

BACKGROUND: Chitinase activity is an important innate immune defence mechanism against infection that includes fungi. The 2 human chitinases: chitotriosidase (CHIT1) and acidic mammalian chitinase are associated to allergy, asthma, and COPD; however, their role in bronchiectasis and bronchiectasis-COPD overlap (BCO) is unknown. RESEARCH QUESTION: What is the association between chitinase activity, airway fungi and clinical outcomes in bronchiectasis and bronchiectasis-COPD overlap? STUDY DESIGN AND METHODS: A prospective cohort of 463 individuals were recruited across five hospital sites in three countries (Singapore, Malaysia, and Scotland) including individuals who were not diseased (n = 35) and who had severe asthma (n = 54), COPD (n = 90), bronchiectasis (n = 241) and BCO (n = 43). Systemic chitinase levels were assessed for bronchiectasis and BCO and related to clinical outcomes, airway Aspergillus status, and underlying pulmonary mycobiome profiles. RESULTS: Systemic chitinase activity is elevated significantly in bronchiectasis and BCO and exceed the activity in other airway diseases. CHIT1 activity strongly predicts bronchiectasis exacerbations and is associated with the presence of at least one Aspergillus species in the airway and frequent exacerbations (≥3 exacerbations/y). Subgroup analysis reveals an association between CHIT1 activity and the "frequent exacerbator" phenotype in South-East Asian patients whose airway mycobiome profiles indicate the presence of novel fungal taxa that include Macroventuria, Curvularia and Sarocladium. These taxa, enriched in frequently exacerbating South-East Asian patients with high CHIT1 may have potential roles in bronchiectasis exacerbations. INTERPRETATION: Systemic CHIT1 activity may represent a useful clinical tool for the identification of fungal-driven "frequent exacerbators" with bronchiectasis in South-East Asian populations.


Assuntos
Povo Asiático , Bronquiectasia/sangue , Bronquiectasia/etnologia , Hexosaminidases/sangue , Aspergilose Pulmonar/sangue , Aspergilose Pulmonar/etnologia , Adulto , Idoso , Aspergillus , Asma/sangue , Asma/complicações , Asma/etnologia , Bronquiectasia/complicações , Feminino , Humanos , Malásia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Aspergilose Pulmonar/complicações , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/etnologia , Escócia , Singapura
5.
Environ Sci Technol ; 54(4): 2389-2400, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31967798

RESUMO

Laser printers emit high levels of nanoparticles (PM0.1) during operation. Although it is well established that toners contain multiple engineered nanomaterials (ENMs), little is known about inhalation exposures to these nanoparticles and work practices in printing centers. In this report, we present a comprehensive inhalation exposure assessment of indoor microenvironments at six commercial printing centers in Singapore, the first such assessment outside of the United States, using real-time personal and stationary monitors, time-integrated instrumentation, and multiple analytical methods. Extensive presence of ENMs, including titanium dioxide, iron oxide, and silica, was detected in toners and in airborne particles collected from all six centers studied. We document high transient exposures to emitted nanoparticles (peaks of ∼500 000 particles/cm3, lung-deposited surface area of up to 220 µm2/cm3, and PM0.1 up to 16 µg/m3) with complex PM0.1 chemistry that included 40-60 wt % organic carbon, 10-15 wt % elemental carbon, and 14 wt % trace elements. We also record 271.6-474.9 pmol/mg of Environmental Protection Agency-priority polycyclic aromatic hydrocarbons. These findings highlight the potentially high occupational inhalation exposures to nanoparticles with complex compositions resulting from widespread usage of nano-enabled toners in the printing industry, as well as inadequate ENM-specific exposure control measures in these settings.


Assuntos
Nanopartículas , Exposição Ocupacional , Monitoramento Ambiental , Exposição por Inalação , Tamanho da Partícula , Impressão Tridimensional , Singapura , Estados Unidos
6.
NanoImpact ; 192020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33511305

RESUMO

Several engineered nanomaterials (ENMs) are used in toner-based printing equipment (TPE) including laser printers and photocopiers to improve toner performance. High concentration of airborne nanoparticles due to TPE emissions has been documented in copy centers and chamber studies. Recent animal inhalation studies by our group suggested exposure to laser printer-emitted nanoparticles (PEPs) increased cardiovascular risk by impairing ventricular performance and inducing hypertension and arrhythmia, consistent with global transcriptomic and metabolomic profiling results. There has been no genome-wide transcriptomic analysis of workers exposed to TPE emissions to systematically assess the occupational exposure health risks. In this pilot study, deep RNA sequencing of blood samples of workers in two printing companies in Singapore was performed. The genome-scale analysis of the blood samples from TPE exposed workers revealed perturbed transcriptional activities related to inflammatory and immune responses, metabolism, cardiovascular impairment, neurological diseases, oxidative stress, physical morphogenesis/deformation, and cancer, when compared with the control peers (office workers). Many of these disease risks associated with particle inhalation exposures in such work environments were consistent with the observation from the PEPs rat inhalation studies. In particular, the cell adhesion molecules (CAMs) was a top significantly perturbed pathway in blood samples from exposed workers compared with the office workers in both companies. The protein expression of sICAM was verified in plasma of exposed workers, showing a positive correlation with daily average nanoparticle concentration in indoor air measured in these two companies. Larger scale genomic and molecular epidemiology studies in copier operators are warranted in order to assess potential risks from such particulate matter exposures.

7.
Int J Mol Sci ; 20(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888290

RESUMO

Laser printer-emitted nanoparticles (PEPs) generated from toners during printing represent one of the most common types of life cycle released particulate matter from nano-enabled products. Toxicological assessment of PEPs is therefore important for occupational and consumer health protection. Our group recently reported exposure to PEPs induces adverse cardiovascular responses including hypertension and arrythmia via monitoring left ventricular pressure and electrocardiogram in rats. This study employed genome-wide mRNA and miRNA profiling in rat lung and blood integrated with metabolomics and lipidomics profiling in rat serum to identify biomarkers for assessing PEPs-induced disease risks. Whole-body inhalation of PEPs perturbed transcriptional activities associated with cardiovascular dysfunction, metabolic syndrome, and neural disorders at every observed time point in both rat lung and blood during the 21 days of exposure. Furthermore, the systematic analysis revealed PEPs-induced transcriptomic changes linking to other disease risks in rats, including diabetes, congenital defects, auto-recessive disorders, physical deformation, and carcinogenesis. The results were also confirmed with global metabolomics profiling in rat serum. Among the validated metabolites and lipids, linoleic acid, arachidonic acid, docosahexanoic acid, and histidine showed significant variation in PEPs-exposed rat serum. Overall, the identified PEPs-induced dysregulated genes, molecular pathways and functions, and miRNA-mediated transcriptional activities provide important insights into the disease mechanisms. The discovered important mRNAs, miRNAs, lipids and metabolites may serve as candidate biomarkers for future occupational and medical surveillance studies. To the best of our knowledge, this is the first study systematically integrating in vivo, transcriptomics, metabolomics, and lipidomics to assess PEPs inhalation exposure-induced disease risks using a rat model.


Assuntos
Doença/genética , Exposição por Inalação/efeitos adversos , Lipidômica , Pulmão/metabolismo , Nanopartículas/efeitos adversos , Soro/metabolismo , Transcriptoma/genética , Poluentes Atmosféricos/análise , Animais , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Impressão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Fatores de Risco
8.
Part Fibre Toxicol ; 15(1): 46, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458822

RESUMO

Our development and usage of engineered nanomaterials has grown exponentially despite concerns about their unfavourable cardiorespiratory consequence, one that parallels ambient ultrafine particle exposure from vehicle emissions. Most research in the field has so far focused on airway inflammation in response to nanoparticle inhalation, however, little is known about nanoparticle-microbiome interaction in the human airway and the environment. Emerging evidence illustrates that the airway, even in its healthy state, is not sterile. The resident human airway microbiome is further altered in chronic inflammatory respiratory disease however little is known about the impact of nanoparticle inhalation on this airway microbiome. The composition of the airway microbiome, which is involved in the development and progression of respiratory disease is dynamic, adding further complexity to understanding microbiota-host interaction in the lung, particularly in the context of nanoparticle exposure. This article reviews the size-dependent properties of nanomaterials, their body deposition after inhalation and factors that influence their fate. We evaluate what is currently known about nanoparticle-microbiome interactions in the human airway and summarise the known clinical, immunological and toxicological consequences of this relationship. While associations between inhaled ambient ultrafine particles and host immune-inflammatory response are known, the airway and environmental microbiomes likely act as intermediaries and facilitate individual susceptibility to inhaled nanoparticles and toxicants. Characterising the precise interaction between the environment and airway microbiomes, inhaled nanoparticles and the host immune system is therefore critical and will provide insight into mechanisms promoting nanoparticle induced airway damage.


Assuntos
Sistema Imunitário/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Microbiota/efeitos dos fármacos , Nanoestruturas/toxicidade , Sistema Respiratório/efeitos dos fármacos , Humanos , Microbiota/imunologia , Nanoestruturas/química , Tamanho da Partícula , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia , Distribuição Tecidual
9.
Expert Rev Respir Med ; 11(4): 285-298, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28282995

RESUMO

INTRODUCTION: Chronic obstructive pulmonary disease accounts for a large burden of lung disease. It can 'overlap' with other respiratory diseases including bronchiectasis, fibrosis and obstructive sleep apnea (OSA). While COPD alone confers morbidity and mortality, common features with contrasting clinical outcomes can occur in COPD 'overlap syndromes'. Areas covered: Given the large degree of heterogeneity in COPD, individual variation to treatment is adopted based on its observed phenotype, which in turn overlaps with features of other respiratory disease states such as asthma. This is coined asthma-COPD overlap syndrome ('ACOS'). Other examples of such overlapping clinical states include bronchiectasis-COPD ('BCOS'), fibrosis-COPD ('FCOS') and OSA-COPD ('OCOS'). The objective of this review is to highlight similarities and differences between the COPD-overlap syndromes in terms of risk factors, pathophysiology, diagnosis and potential treatment differences. Expert commentary: As a consequence of COPD overlap syndromes, a transition from the traditional 'one size fits all' treatment approach is necessary. Greater treatment stratification according to clinical phenotype using a precision medicine approach is now required. In this light, it is important to recognize and differentiate COPD overlap syndromes as distinct disease states compared to individual diseases such as asthma, COPD, fibrosis or bronchiectasis.


Assuntos
Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Humanos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Síndrome
10.
Nat Commun ; 6: 7971, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26259071

RESUMO

Neutrophils are an abundant immune cell type involved in both antimicrobial defence and autoimmunity. The regulation of their gene expression, however, is still largely unknown. Here we report an eQTL study on isolated neutrophils from 114 healthy individuals of Chinese ethnicity, identifying 21,210 eQTLs on 832 unique genes. Unsupervised clustering analysis of these eQTLs confirms their role in inflammatory responses and immunological diseases but also indicates strong involvement in dermatological pathologies. One of the strongest eQTL identified (rs2058660) is also the tagSNP of a linkage block reported to affect leprosy and Crohn's disease in opposite directions. In a functional study, we can link the C allele with low expression of the ß-chain of IL18-receptor (IL18RAP). In neutrophils, this results in a reduced responsiveness to IL-18, detected both on the RNA and protein level. Thus, the polymorphic regulation of human neutrophils can impact beneficial as well as pathological inflammatory responses.


Assuntos
Regulação da Expressão Gênica/fisiologia , Estudo de Associação Genômica Ampla , Neutrófilos/metabolismo , Adolescente , Adulto , Análise por Conglomerados , Feminino , Ligação Genética , Genótipo , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adulto Jovem
11.
J Immunother ; 38(6): 250-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26049548

RESUMO

Adoptive cell therapy is an emerging treatment strategy for a number of serious diseases. Regulatory T (Treg) cells represent 1 cell type of particular interest for therapy of inflammatory conditions, as they are responsible for controlling unwanted immune responses. Initial clinical trials of adoptive transfer of Treg cells in patients with graft-versus-host disease were shown to be safe. However, obtaining sufficient numbers of highly pure and functional Treg cells with minimal contamination remains a challenge. We developed a novel approach to isolate "untouched" human Treg cells from healthy donors on the basis of negative selection using the surface markers CD49d and CD127. This procedure, which uses an antibody cocktail and magnetic beads for separation in an automated system (RoboSep), was scaled up and adapted to be compatible with good manufacturing practice conditions. With this setup we performed 9 Treg isolations from large-scale leukapheresis samples in a good manufacturing practice facility. These runs yielded sufficient numbers of "untouched" Treg cells for immediate use in clinical applications. The cell preparations consisted of viable highly pure FoxP3-positive Treg cells that were functional in suppressing the proliferation of effector T cells. Contamination with CD4 effector T cells was <10%. All other cell types did not exceed 2% in the final product. Remaining isolation reagents were reduced to levels that are considered safe. Treg cells isolated with this procedure will be used in a phase I clinical trial of adoptive transfer into leukemia patients developing graft-versus-host disease after stem cell transplantation.


Assuntos
Separação Celular/métodos , Doença Enxerto-Hospedeiro/prevenção & controle , Imunoterapia Adotiva , Leucemia/terapia , Transplante de Células-Tronco , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Sobrevivência Celular , Células Cultivadas , Ensaios Clínicos como Assunto , Fatores de Transcrição Forkhead/metabolismo , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/imunologia , Humanos , Terapia de Imunossupressão , Integrina alfa4/metabolismo , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Leucemia/complicações , Leucemia/imunologia , Linfócitos T Reguladores/transplante
12.
BMC Med Genet ; 15: 73, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24970562

RESUMO

BACKGROUND: Extracellular ATP is a pro-inflammatory molecule released by damaged cells. Regulatory T cells (Treg) can suppress inflammation by hydrolysing this molecule via ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1), also termed as CD39. Multiple studies have reported differences in CD39+ Treg percentages in diseases such as multiple sclerosis, Hepatitis B and HIV-1. In addition, CD39 polymorphisms have been implicated in immune-phenotypes such as susceptibility to inflammatory bowel disease and AIDS progression. However none of the studies published so far has linked disease-associated variants with differences in CD39 Treg surface expression. This study aims at identifying variants affecting CD39 expression on Treg and at evaluating their association with allergic rhinitis, a disease characterized by a strong Treg involvement. METHODS: Cohorts consisting of individuals of different ethnicities were employed to identify any association of CD39 variants to surface expression. Significant variant(s) were tested for disease association in a published GWAS cohort by one-locus and two-locus genetic analyses based on logistic models. Further functional characterization was performed using existing microarray data and quantitative RT-PCR on sorted cells. RESULTS: Our study shows that rs7071836, a promoter SNP in the CD39 gene region, affects the cell surface expression on Treg cells but not on other CD39+ leukocyte subsets. Epistasis analysis revealed that, in conjunction with a SNP upstream of the FAM134B gene (rs257174), it increased the risk of allergic rhinitis (P = 1.98 × 10-6). As a promoter SNP, rs257174 controlled the expression of the gene in monocytes but, notably, not in Treg cells. Whole blood transcriptome data of three large cohorts indicated an inverse relation in the expression of the two proteins. While this observation was in line with the epistasis data, it also implied that a functional link must exist. Exposure of monocytes to extracellular ATP resulted in an up-regulation of FAM134B gene expression, suggesting that extracellular ATP released from damaged cells represents the connection for the biological interaction of CD39 on Treg cells with FAM134B on monocytes. CONCLUSIONS: The interplay between promoter SNPs of CD39 and FAM134B results in an intercellular epistasis which influences the risk of a complex inflammatory disease.


Assuntos
Antígenos CD/genética , Apirase/genética , Epistasia Genética , Proteínas de Neoplasias/genética , Rinite Alérgica Perene/genética , Antígenos CD/imunologia , Apirase/imunologia , Estudos de Casos e Controles , Variação Genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Monócitos/imunologia , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Rinite Alérgica , Rinite Alérgica Perene/imunologia , Linfócitos T Reguladores/imunologia
13.
Gen Comp Endocrinol ; 163(1-2): 83-91, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18957294

RESUMO

Despite occupying the same habitats as mammals, having similar ranges of body mass and longevity, and facing similar pathogen challenges, birds have a different repertoire of organs, cells, molecules and genes of the immune system when compared to mammals. In other words, birds are not "mice with feathers", at least not in terms of their immune systems. Here we discuss differences between immune gene repertoires of birds and mammals, particularly those known to play a role in immune-endocrine interactions in mammals. If we are to begin to understand immune-endocrine interactions in the chicken, we need to understand these repertoires and also the biological function of the proteins encoded by these genes. We also discuss developments in our ability to understand the function of dendritic cells in the chicken; the function of these professional antigen-presenting cells is affected by stress in mammals. With regard to the endocrine system, we describe relevant chicken pituitary-adrenal hormones, and review recent findings on the expression of their receptors, as these receptors play a crucial role in modulating immune-endocrine interactions. Finally, we review the (albeit limited) work that has been carried out to understand immune-endocrine interactions in the chicken in the post-genome era.


Assuntos
Galinhas/fisiologia , Sistema Endócrino/metabolismo , Sistema Imunitário/metabolismo , Animais , Quimiocinas/metabolismo , Galinhas/imunologia , Galinhas/metabolismo , Citocinas/metabolismo , Modelos Biológicos , Receptores Toll-Like/metabolismo
14.
J Stem Cells ; 4(3): 161-77, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20232601

RESUMO

Cytopenias arising from hematopoietic abnormalities are a severe common complication contributing to early mortality in HIV/AIDS patients. The proto-oncogene c-mpl, identified as the thrombopoietin receptor is involved in multilineage differentiation of CD34+ hematopoietic progenitor cells. We have introduced the c-mpl gene into CD34+ cells via transduction of the lentivirus p156RRLsinPPTmPGK-CMPL-PRE. The lentiviral construct expresses c-mpl on approximately 90% of purified CD34+ cells. These transduced cells have then been reconstituted into human fetal thymus/liver implants in severe combined immunodeficient mice (SCID-hu Thy/Liv). The c-mpl expression on transduced CD34+ cells is not susceptible to downregulation due to the effects of HIV-1 infection. Reconstituted CD34+ cells transduced with control lentivirus, p156RRLsinPPTmPGK-EGFP-PRE, express EGFP at > 90%. Reconstituted c-mpl expressing SCID-hu implants show almost maximum rescue (approximately 90%) of myelopoiesis, erythropoiesis and megakaryopoiesis, during HIV-1 infection in vivo, at 6 weeks post-infection. We also show that the differentiated multi-lineage progeny colonies and thymocytes in mice reconstituted with the c-mpl transduced CD34+ cells, carry the HLA Class I loci phenotypes of these donor cells, in the implants of the recipient SCID-hu animals. We propose a gene therapeutic strategy, with c-mpl as the major genetic component, to address the morbidity and mortality resulting from cytopenias in HIV infected patients.


Assuntos
Linhagem da Célula , Células-Tronco Fetais/transplante , Terapia Genética/métodos , Infecções por HIV/terapia , HIV-1/patogenicidade , Doenças Hematológicas/terapia , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Receptores de Trombopoetina/biossíntese , Animais , Antígenos CD34/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células-Tronco Fetais/metabolismo , Vetores Genéticos , Infecções por HIV/sangue , Infecções por HIV/genética , Infecções por HIV/virologia , Doenças Hematológicas/sangue , Doenças Hematológicas/genética , Doenças Hematológicas/virologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Fígado/embriologia , Fígado/cirurgia , Transplante de Fígado , Camundongos , Camundongos SCID , Proto-Oncogene Mas , Interferência de RNA , Receptores de Trombopoetina/genética , Timo/embriologia , Timo/transplante , Fatores de Tempo , Transdução Genética
15.
J Biol Chem ; 283(24): 16408-15, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18417470

RESUMO

The original report of chicken CXCR1 (Li, Q. J., Lu, S., Ye, R. D., and Martins-Green, M. (2000) Gene (Amst.) 257, 307-317) described it as a single exon gene, with two isoforms (differing in their start codon). In comparison with mammalian CXCR1, the reported chicken CXCR1 was longer at both the NH(2) and COOH termini, and it lacked the conserved (C/S)CXNP motif present in the last transmembrane region of all known chemokine receptors. A re-evaluation of chicken CXCR1, comparing known expressed sequence tags with the chicken genome sequence, suggested that the gene contains two exons. We isolated a cDNA corresponding to our prediction, which was significantly different in sequence to the reported CXCR1. In particular, there were three frameshifts in our sequence, compared with the reported sequence, that restored higher identity in the COOH-terminal half of the protein to mammalian CXCR1 (61% total amino acid identity compared with 52% for the reported CXCR1), restored the (C/S)CXNP motif, and gave a predicted protein of the same length as mammalian CXCR1. In human, CXCR1 is the receptor for CXCL8. In the chicken, there are two syntenic genes, CXCLi1 and CXCLi2, which look equally like orthologues of human CXCL8. We demonstrate that both of these chemokines are ligands for chicken CXCR1. We also demonstrate that heterophils express chicken CXCR1 and that the receptor is Galpha(i) protein-linked.


Assuntos
Proteínas Aviárias/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica , Interleucina-8/metabolismo , Receptores de Interleucina-8A/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Galinhas , Relação Dose-Resposta a Droga , Ligantes , Camundongos , Dados de Sequência Molecular , Monócitos/citologia , Ligação Proteica , Homologia de Sequência de Aminoácidos
16.
Dev Comp Immunol ; 31(1): 72-86, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16782198

RESUMO

Analysis of the chicken genome has shown that the chicken has a different repertoire of chemokines and chemokine receptors to those of mammals and other species. In this study, we report the sequencing and analysis of a bacterial artificial chromosome containing the entire chicken MIP family CC chemokine cluster. The gene duplication and divergence events that have taken place in mammals do not appear to have occurred as extensively in the avian lineage, as chickens possess fewer MIP family chemokine genes than humans or mice. We previously proposed that the four chicken MIP family members be named chicken (ch) CCLi1-4, according to their position on chicken chromosome 19, until such time as further analysis could determine if any of them were direct orthologues of mammalian MIP family members. Our analysis herein, combined with that of others, suggests that chCCLi4 is the orthologue of mammalian CCL5, and that chCCLi3 (K203) may be an orthologue of human CCL16. The other two chemokines do not have obvious orthologues, and thus we propose that they should still be called chCCLi1 and chCCLi2, until their biological function is further characterised. A similar pattern applies to the MIP family chemokine receptors, with only three receptor genes present at the relevant locus in the chicken genome, compared to four in man and mouse (CCR1, CCR2, CCR3 and CCR5). Of the three chicken receptor genes, only two look likely to be receptors for the MIP family chemokines, the third grouping with human, mouse and chicken CCR8 in phylogenetic analysis. The two chicken MIP CC receptors (CCRs) are not direct orthologues of the mammalian MIP CCRs.


Assuntos
Quimiocinas CC/genética , Galinhas/imunologia , Perfilação da Expressão Gênica , Linfócitos/imunologia , Proteínas Inflamatórias de Macrófagos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Quimiocinas CC/metabolismo , Galinhas/genética , Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais Bacterianos/metabolismo , Linfócitos/metabolismo , Dados de Sequência Molecular , Filogenia , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
17.
J Interferon Cytokine Res ; 25(8): 467-84, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16108730

RESUMO

As most mechanisms of adaptive immunity evolved during the divergence of vertebrates, the immune systems of extant vertebrates represent different successful variations on the themes initiated in their earliest common ancestors. The genes involved in elaborating these mechanisms have been subject to exceptional selective pressures in an arms race with highly adaptable pathogens, resulting in highly divergent sequences of orthologous genes and the gain and loss of members of gene families as different species find different solutions to the challenge of infection. Consequently, it has been difficult to transfer to the chicken detailed knowledge of the molecular mechanisms of the mammalian immune system and, thus, to enhance the already significant contribution of chickens toward understanding the evolution of immunity. The availability of the chicken genome sequence provides the opportunity to resolve outstanding questions concerning which molecular components of the immune system are shared between mammals and birds and which represent their unique evolutionary solutions. We have integrated genome data with existing knowledge to make a new comparative census of members of cytokine and chemokine gene families, distinguishing the core set of molecules likely to be common to all higher vertebrates from those particular to these 300 million-year-old lineages. Some differences can be explained by the different architectures of the mammalian and avian immune systems. Chickens lack lymph nodes and also the genes for the lymphotoxins and lymphotoxin receptors. The lack of functional eosinophils correlates with the absence of the eotaxin genes and our previously reported observation that interleukin- 5 (IL-5) is a pseudogene. To summarize, in the chicken genome, we can identify the genes for 23 ILs, 8 type I interferons (IFNs), IFN-gamma, 1 colony-stimulating factor (GM-CSF), 2 of the 3 known transforming growth factors (TGFs), 24 chemokines (1 XCL, 14 CCL, 8 CXCL, and 1 CX3CL), and 10 tumor necrosis factor superfamily (TNFSF) members. Receptor genes present in the genome suggest the likely presence of 2 other ILs, 1 other CSF, and 2 other TNFSF members.


Assuntos
Quimiocinas/genética , Galinhas/genética , Citocinas/genética , Genômica , Sequência de Aminoácidos , Animais , Citocinas/química , Humanos , Inflamação/genética , Dados de Sequência Molecular , Filogenia , Receptores de Quimiocinas/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...