Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1414, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360755

RESUMO

Archaea play indispensable roles in global biogeochemical cycles, yet many crucial cellular processes, including cell-shape determination, are poorly understood. Haloferax volcanii, a model haloarchaeon, forms rods and disks, depending on growth conditions. Here, we used a combination of iterative proteomics, genetics, and live-cell imaging to identify mutants that only form rods or disks. We compared the proteomes of the mutants with wild-type cells across growth phases, thereby distinguishing between protein abundance changes specific to cell shape and those related to growth phases. The results identified a diverse set of proteins, including predicted transporters, transducers, signaling components, and transcriptional regulators, as important for cell-shape determination. Through phenotypic characterization of deletion strains, we established that rod-determining factor A (RdfA) and disk-determining factor A (DdfA) are required for the formation of rods and disks, respectively. We also identified structural proteins, including an actin homolog that plays a role in disk-shape morphogenesis, which we named volactin. Using live-cell imaging, we determined volactin's cellular localization and showed its dynamic polymerization and depolymerization. Our results provide insights into archaeal cell-shape determination, with possible implications for understanding the evolution of cell morphology regulation across domains.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Forma Celular , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
2.
J Microbiol Biol Educ ; 23(3)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36532226

RESUMO

Microbiology courses are often designed as either a lecture class with a laboratory component or a seminar-style class. Each type of course provides students with unique learning opportunities. Lab courses allow students to perform simple experiments that relate to fundamental concepts taught in the corresponding lectures, while seminar courses challenge students to read and discuss primary literature. Microbiology courses offering a combination of seminar-style discussions and laboratory procedures are rare. Our goal in the "Microbial Diversity and Pathogenesis" undergraduate course is to integrate experiences of a seminar class with those of a discovery-driven lab course, thereby strengthening students' learning experiences through diversified didactic approaches. In the first half of the course, students read and discuss published peer-reviewed articles that cover major topics in both basic and applied microbiology, including antibiotic resistance, pathogenesis, and biotechnology applications. Complementing this primary literature, students perform microbiology experiments related to the topics covered in the readings. The assigned readings, discussions, and experiments provide a foundation in the second half of the course for inquiry-based exploratory research using student-designed transposon screens and selections. The course culminates in each student drafting a hypothesis-driven research proposal based on their literature review, their learned experimental techniques, and the preliminary data generated as a class. Through such first-hand experimental experience, students gain fundamental lab skills that are applicable beyond the realm of microbiology, such as sterile technique and learning how to support conclusions with scientific evidence. We observed a tremendous synergy between the seminar and lab aspects of our course. This unique didactic experience allows students to understand and connect primary literature to their experiments, while the discovery-driven aspect of this approach fosters active engagement of students with scientific research.

3.
Methods Mol Biol ; 2522: 287-300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125757

RESUMO

Despite the ecological, evolutionary and economical significance of archaea, key aspects of their cell biology, metabolic pathways, and adaptations to a wide spectrum of environmental conditions, remain to be elucidated. Proteomics allows for the system-wide analysis of proteins, their changes in abundance between different conditions, as well as their post-translational modifications, providing detailed insights into the function of proteins and archaeal cell biology. In this chapter, we describe a sample preparation and mass spectrometric analysis workflow that has been designed for Haloferax volcanii but can be applied to a broad range of archaeal species. Furthermore, proteomics experiments provide a wealth of data that is invaluable to various disciplines. Therefore, we previously initiated the Archaeal Proteome Project (ArcPP), a community project that combines the analysis of multiple datasets with expert knowledge in various fields of archaeal research. The corresponding bioinformatic analysis, allowing for the integration of new proteomics data into the ArcPP, as well as the interactive exploration of ArcPP results is also presented here. In combination, these protocols facilitate an optimized, detailed and collaborative approach to archaeal proteomics.


Assuntos
Haloferax volcanii , Proteoma , Análise de Dados , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteômica/métodos
4.
Methods Mol Biol ; 2522: 387-395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125765

RESUMO

Biofilms are cellular aggregates encased in extracellular polymeric substances and are commonly formed by single-celled eukaryotes, bacteria, and archaea. In addition to attaching to solid surfaces, these cellular aggregates can also be observed floating on or immersed within liquid cultures. While biofilms on surfaces have been studied in some archaea, little is known about liquid biofilms. Surprisingly, immersed liquid biofilms of the model archaeon Haloferax volcanii do not require the same set of machinery needed to form surface-attached biofilms. In fact, to date not a single gene has been identified that is involved in forming immersed liquid biofilms. Interestingly, after an immersed liquid biofilm forms, removal of the Petri dish lid induces rapid, transient, and reproducible honeycomb patterns within the immersed liquid biofilm itself, triggered by a reduction in humidity. In this chapter, we outline a protocol for both immersed liquid biofilm and honeycomb pattern formations. This protocol will be essential for determining the novel components required for the formation of immersed liquid biofilms and honeycomb patterns.


Assuntos
Haloferax volcanii , Bactérias , Biofilmes , Haloferax volcanii/genética
5.
Methods Mol Biol ; 2522: 397-406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125766

RESUMO

Biofilms are aggregates of cells surrounded by an extracellular matrix providing protection from external stresses. While biofilms are commonly studied in bacteria, archaea also form such cell aggregates both in liquid cultures and on solid surfaces. Biofilm architectures vary when in liquid cultures versus on surfaces as well as when incubated under static conditions versus under shear forces of flowing liquid. Moreover, biofilms develop dynamically over time. Here, we describe surface adhesion assays employing a cost-effective, 3D-printed coverslip holder that can be used under a broad range of standing and shaking culture conditions. This multi-panel adhesion (mPAD) mount further allows the same culture to be sampled at multiple time points, ensuring consistency and comparability between samples and enabling analysis of the dynamics of biofilm formation. Additionally, a traditional surface adhesion assay in a 12-well plate under standing conditions is outlined as well. We anticipate the combination of these protocols to be useful for analyzing a wide array of biofilms and answering a multitude of biological questions.


Assuntos
Archaea , Biofilmes , Análise Custo-Benefício
6.
Methods Mol Biol ; 2522: 531-545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125773

RESUMO

Early exposure to science is critical to incite interest in scientific careers, promote equity and retention in STEM fields, and increase the general understanding of the scientific method. For many educators, however, the myriad resources that many scientific experiments require are not readily available. Microbiology experiments in particular can often be inaccessible for a lot of classrooms. In addition, microbiological studies often involve eukaryotic microbes and bacteria while excluding an entire domain of life: archaea. Archaea are more closely related to eukaryotes than are bacteria, and although all prokaryotic cells lack a nucleus, various key aspects of the cell biology of archaea and bacteria are fundamentally different. In addition to being useful for teaching about the diversity and evolution of living organisms, these differences between archaea and bacteria can also be harnessed to teach and emphasize other important biological topics. Haloferax volcanii is a non-pathogenic model haloarchaeon that allows for safe, affordable, and accessible microbiological experiments, as the requirement of high-salt media to grow H. volcanii presents a low risk of contamination. Here, we describe how H. volcanii can be used in the classroom and outline a protocol demonstrating their resistance to a broad spectrum of antibiotics, underscoring the distinct cell biology of bacteria and archaea. Finally, we introduce strategies and protocols to perform this and other H. volcanii experiments such that they can be performed based on the resources available in a high school or undergraduate classroom.


Assuntos
Haloferax volcanii , Antibacterianos , Bactérias , Eucariotos
7.
J Microbiol Biol Educ ; 23(1)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35340443

RESUMO

Archaea, once thought to only live in extreme environments, are present in many ecosystems, including the human microbiome, and they play important roles ranging from nutrient cycling to bioremediation. Yet this domain is often overlooked in microbiology classes and rarely included in laboratory exercises. Excluding archaea from high school and undergraduate curricula prevents students from learning the uniqueness and importance of this domain. Here, we have modified a familiar and popular microbiology experiment-the Kirby-Bauer disk diffusion antibiotic susceptibility test-to include, together with the model bacterium Escherichia coli, the model archaeon Haloferax volcanii. Students will learn the differences and similarities between archaea and bacteria by using antibiotics that target, for example, the bacterial peptidoglycan cell wall or the ribosome. Furthermore, the experiment provides a platform to reiterate basic cellular biology concepts that students may have previously discussed. We have developed two versions of this experiment, one designed for an undergraduate laboratory curriculum and the second, limited to H. volcanii, that high school students can perform in their classrooms. This nonpathogenic halophile can be cultured aerobically at ambient temperature in high-salt media, preventing contamination, making the experiment low-cost and safe for use in the high school setting.

8.
Appl Environ Microbiol ; 88(4): e0228321, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35191778

RESUMO

Most microorganisms exist in biofilms, which comprise aggregates of cells surrounded by an extracellular matrix that provides protection from external stresses. Based on the conditions under which they form, biofilm structures vary in significant ways. For instance, biofilms that develop when microbes are incubated under static conditions differ from those formed when microbes encounter the shear forces of a flowing liquid. Moreover, biofilms develop dynamically over time. Here, we describe a cost-effective coverslip holder, printed with a three-dimensional (3D) printer, that facilitates surface adhesion assays under a broad range of standing and shaking culture conditions. This multipanel adhesion (mPAD) mount further allows cultures to be sampled at multiple time points, ensuring consistency and comparability between samples and enabling analyses of the dynamics of biofilm formation. As a proof of principle, using the mPAD mount for shaking, oxic cultures, we confirm previous flow chamber experiments showing that the Pseudomonas aeruginosa wild-type strain and a phenazine deletion mutant (Δphz) strain form biofilms with similar structure but reduced density in the mutant strain. Extending this analysis to anoxic conditions, we reveal that microcolony formation and biofilm formation can only be observed under shaking conditions and are decreased in the Δphz mutant compared to wild-type cultures, indicating that phenazines are crucial for the formation of biofilms if oxygen as an electron acceptor is unavailable. Furthermore, while the model archaeon Haloferax volcanii does not require archaella for surface attachment under static conditions, we demonstrate that an H. volcanii mutant that lacks archaella is impaired in early stages of biofilm formation under shaking conditions. IMPORTANCE Due to the versatility of the mPAD mount, we anticipate that it will aid the analysis of biofilm formation in a broad range of bacteria and archaea. Thereby, it contributes to answering critical biological questions about the regulatory and structural components of biofilm formation and understanding this process in a wide array of environmental, biotechnological, and medical contexts.


Assuntos
Biofilmes , Técnicas Microbiológicas , Células Procarióticas , Análise Custo-Benefício , Haloferax volcanii , Técnicas Microbiológicas/métodos , Células Procarióticas/fisiologia , Pseudomonas aeruginosa
9.
PLoS Biol ; 19(6): e3001277, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138841

RESUMO

Glycosylation is one of the most complex posttranslational protein modifications. Its importance has been established not only for eukaryotes but also for a variety of prokaryotic cellular processes, such as biofilm formation, motility, and mating. However, comprehensive glycoproteomic analyses are largely missing in prokaryotes. Here, we extend the phenotypic characterization of N-glycosylation pathway mutants in Haloferax volcanii and provide a detailed glycoproteome for this model archaeon through the mass spectrometric analysis of intact glycopeptides. Using in-depth glycoproteomic datasets generated for the wild-type (WT) and mutant strains as well as a reanalysis of datasets within the Archaeal Proteome Project (ArcPP), we identify the largest archaeal glycoproteome described so far. We further show that different N-glycosylation pathways can modify the same glycosites under the same culture conditions. The extent and complexity of the Hfx. volcanii N-glycoproteome revealed here provide new insights into the roles of N-glycosylation in archaeal cell biology.


Assuntos
Proteínas Arqueais/metabolismo , Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , Haloferax volcanii/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Bioensaio , Forma Celular/efeitos dos fármacos , Bases de Dados de Proteínas , Glicopeptídeos/química , Glicoproteínas/química , Glicosilação/efeitos dos fármacos , Haloferax volcanii/efeitos dos fármacos , Mutação/genética , Fenótipo , Filogenia , Proteômica , Cloreto de Sódio/farmacologia
10.
J Proteome Res ; 20(4): 1986-1996, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33514075

RESUMO

The identification of peptide sequences and their post-translational modifications (PTMs) is a crucial step in the analysis of bottom-up proteomics data. The recent development of open modification search (OMS) engines allows virtually all PTMs to be searched for. This not only increases the number of spectra that can be matched to peptides but also greatly advances the understanding of the biological roles of PTMs through the identification, and the thereby facilitated quantification, of peptidoforms (peptide sequences and their potential PTMs). Whereas the benefits of combining results from multiple protein database search engines have been previously established, similar approaches for OMS results have been missing so far. Here we compare and combine results from three different OMS engines, demonstrating an increase in peptide spectrum matches of 8-18%. The unification of search results furthermore allows for the combined downstream processing of search results, including the mapping to potential PTMs. Finally, we test for the ability of OMS engines to identify glycosylated peptides. The implementation of these engines in the Python framework Ursgal facilitates the straightforward application of the OMS with unified parameters and results files, thereby enabling yet unmatched high-throughput, large-scale data analysis.


Assuntos
Algoritmos , Software , Bases de Dados de Proteínas , Processamento de Proteína Pós-Traducional , Proteômica , Ferramenta de Busca
11.
Microbiology (Reading) ; 167(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33459585

RESUMO

Some microbes display pleomorphism, showing variable cell shapes in a single culture, whereas others differentiate to adapt to changed environmental conditions. The pleomorphic archaeon Haloferax volcanii commonly forms discoid-shaped ('plate') cells in culture, but may also be present as rods, and can develop into motile rods in soft agar, or longer filaments in certain biofilms. Here we report improvement of H. volcanii growth in both semi-defined and complex media by supplementing with eight trace element micronutrients. With these supplemented media, transient development of plate cells into uniformly shaped rods was clearly observed during the early log phase of growth; cells then reverted to plates for the late log and stationary phases. In media prepared with high-purity water and reagents, without supplemental trace elements, rods and other complex elongated morphologies ('pleomorphic rods') were observed at all growth stages of the culture; the highly elongated cells sometimes displayed a substantial tubule at one or less frequently both poles, as well as unusual tapered and highly curved forms. Polar tubules were observed forming by initial mid-cell narrowing or tubulation, causing a dumbbell-like shape, followed by cell division towards one end. Formation of the uniform early log-phase rods, as well as the pleomorphic rods and tubules were dependent on the function of the tubulin-like cytoskeletal protein, CetZ1. Our results reveal the remarkable morphological plasticity of H. volcanii cells in response to multiple culture conditions, and should facilitate the use of this species in further studies of archaeal biology.


Assuntos
Haloferax volcanii/citologia , Haloferax volcanii/crescimento & desenvolvimento , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Meios de Cultura/química , Citoesqueleto/genética , Citoesqueleto/metabolismo , Haloferax volcanii/metabolismo , Nutrientes/análise , Oligoelementos/análise
12.
Bioinformatics ; 36(22-23): 5330-5336, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325487

RESUMO

MOTIVATION: Protein glycosylation is a complex post-translational modification with crucial cellular functions in all domains of life. Currently, large-scale glycoproteomics approaches rely on glycan database dependent algorithms and are thus unsuitable for discovery-driven analyses of glycoproteomes. RESULTS: Therefore, we devised SugarPy, a glycan database independent Python module, and validated it on the glycoproteome of human breast milk. We further demonstrated its applicability by analyzing glycoproteomes with uncommon glycans stemming from the green alga Chlamydomonas reinhardtii and the archaeon Haloferax volcanii. SugarPy also facilitated the novel characterization of glycoproteins from the red alga Cyanidioschyzon merolae. AVAILABILITY AND IMPLEMENTATION: The source code is freely available on GitHub (https://github.com/SugarPy/SugarPy), and its implementation in Python ensures support for all operating systems. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

13.
mSphere ; 5(6)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328348

RESUMO

The ability to form biofilms is shared by many microorganisms, including archaea. Cells in a biofilm are encased in extracellular polymeric substances that typically include polysaccharides, proteins, and extracellular DNA, conferring protection while providing a structure that allows for optimal nutrient flow. In many bacteria, flagella and evolutionarily conserved type IV pili are required for the formation of biofilms on solid surfaces or floating at the air-liquid interface of liquid media. Similarly, in many archaea it has been demonstrated that type IV pili and, in a subset of these species, archaella are required for biofilm formation on solid surfaces. Additionally, in the model archaeon Haloferax volcanii, chemotaxis and AglB-dependent glycosylation play important roles in this process. H. volcanii also forms immersed biofilms in liquid cultures poured into petri dishes. This study reveals that mutants of this haloarchaeon that interfere with the biosynthesis of type IV pili or archaella, as well as a chemotaxis-targeting transposon and aglB deletion mutants, lack obvious defects in biofilms formed in liquid cultures. Strikingly, we have observed that these liquid-based biofilms are capable of rearrangement into honeycomb-like patterns that rapidly form upon removal of the petri dish lid, a phenomenon that is not dependent on changes in light or oxygen concentration but can be induced by controlled reduction of humidity. Taken together, this study demonstrates that H. volcanii requires novel, unidentified strategies for immersed liquid biofilm formation and also exhibits rapid structural rearrangements.IMPORTANCE This first molecular biological study of archaeal immersed liquid biofilms advances our basic biological understanding of the model archaeon Haloferax volcanii Data gleaned from this study also provide an invaluable foundation for future studies to uncover components required for immersed liquid biofilms in this haloarchaeon and also potentially for liquid biofilm formation in general, which is poorly understood compared to the formation of biofilms on surfaces. Moreover, this first description of rapid honeycomb pattern formation is likely to yield novel insights into the underlying structural architecture of extracellular polymeric substances and cells within immersed liquid biofilms.


Assuntos
Biofilmes , Proteínas de Fímbrias/metabolismo , Haloferax volcanii/metabolismo , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Glicosilação , Haloferax volcanii/citologia , Haloferax volcanii/genética , Polissacarídeos/metabolismo
14.
Nat Commun ; 11(1): 3145, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561711

RESUMO

While many aspects of archaeal cell biology remain relatively unexplored, systems biology approaches like mass spectrometry (MS) based proteomics offer an opportunity for rapid advances. Unfortunately, the enormous amount of MS data generated often remains incompletely analyzed due to a lack of sophisticated bioinformatic tools and field-specific biological expertise for data interpretation. Here we present the initiation of the Archaeal Proteome Project (ArcPP), a community-based effort to comprehensively analyze archaeal proteomes. Starting with the model archaeon Haloferax volcanii, we reanalyze MS datasets from various strains and culture conditions. Optimized peptide spectrum matching, with strict control of false discovery rates, facilitates identifying > 72% of the reference proteome, with a median protein sequence coverage of 51%. These analyses, together with expert knowledge in diverse aspects of cell biology, provide meaningful insights into processes such as N-terminal protein maturation, N-glycosylation, and metabolism. Altogether, ArcPP serves as an invaluable blueprint for comprehensive prokaryotic proteomics.


Assuntos
Proteínas Arqueais/metabolismo , Haloferax volcanii/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Conjuntos de Dados como Assunto , Glicosilação , Espectrometria de Massas
15.
mBio ; 11(2)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209681

RESUMO

The archaeal cytoplasmic membrane provides an anchor for many surface proteins. Recently, a novel membrane anchoring mechanism involving a peptidase, archaeosortase A (ArtA), and C-terminal lipid attachment of surface proteins was identified in the model archaeon Haloferax volcanii ArtA is required for optimal cell growth and morphogenesis, and the S-layer glycoprotein (SLG), the sole component of the H. volcanii cell wall, is one of the targets for this anchoring mechanism. However, how exactly ArtA function and regulation control cell growth and morphogenesis is still elusive. Here, we report that archaeal homologs to the bacterial phosphatidylserine synthase (PssA) and phosphatidylserine decarboxylase (PssD) are involved in ArtA-dependent protein maturation. Haloferax volcanii strains lacking either HvPssA or HvPssD exhibited motility, growth, and morphological phenotypes similar to those of an ΔartA mutant. Moreover, we showed a loss of covalent lipid attachment to SLG in the ΔhvpssA mutant and that proteolytic cleavage of the ArtA substrate HVO_0405 was blocked in the ΔhvpssA and ΔhvpssD mutant strains. Strikingly, ArtA, HvPssA, and HvPssD green fluorescent protein (GFP) fusions colocalized to the midcell position of H. volcanii cells, strongly supporting that they are involved in the same pathway. Finally, we have shown that the SLG is also recruited to the midcell before being secreted and lipid anchored at the cell outer surface. Collectively, our data suggest that haloarchaea use the midcell as the main surface processing hot spot for cell elongation, division, and shape determination.IMPORTANCE The subcellular organization of biochemical processes in space and time is still one of the most mysterious topics in archaeal cell biology. Despite the fact that haloarchaea largely rely on covalent lipid anchoring to coat the cell envelope, little is known about how cells coordinate de novo synthesis and about the insertion of this proteinaceous layer throughout the cell cycle. Here, we report the identification of two novel contributors to ArtA-dependent lipid-mediated protein anchoring to the cell surface, HvPssA and HvPssD. ArtA, HvPssA, and HvPssD, as well as SLG, showed midcell localization during growth and cytokinesis, indicating that haloarchaeal cells confine phospholipid processing in order to promote midcell elongation. Our findings have important implications for the biogenesis of the cell surface.


Assuntos
Proteínas Arqueais/metabolismo , Haloferax volcanii/enzimologia , Haloferax volcanii/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Fosfolipídeos/metabolismo , Proteínas Arqueais/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Haloferax volcanii/genética , Proteínas de Membrana/genética , Peptídeo Hidrolases/genética
16.
Genes (Basel) ; 12(1)2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396553

RESUMO

Motility regulation plays a key role in prokaryotic responses to environmental stimuli. Here, we used a motility screen and selection to isolate hypermotile Haloferax volcanii mutants from a transposon insertion library. Whole genome sequencing revealed that hypermotile mutants were predominantly affected in two genes that encode HVO_1357 and HVO_2248. Alterations of these genes comprised not only transposon insertions but also secondary genome alterations. HVO_1357 contains a domain that was previously identified in the regulation of bacteriorhodopsin transcription, as well as other domains frequently found in two-component regulatory systems. The genes adjacent to hvo_1357 encode a sensor box histidine kinase and a response regulator, key players of a two-component regulatory system. None of the homologues of HVO_2248 have been characterized, nor does it contain any of the assigned InterPro domains. However, in a significant number of Haloferax species, the adjacent gene codes for a chemotaxis receptor/transducer. Our results provide a foundation for characterizing the root causes underlying Hfx. volcanii hypermotility.


Assuntos
Proteínas Arqueais/genética , Quimiotaxia/genética , Genoma Arqueal , Haloferax volcanii/genética , Mutagênese Insercional , Mutação , Proteínas Arqueais/classificação , Proteínas Arqueais/metabolismo , Mapeamento Cromossômico , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Haloferax volcanii/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Sequenciamento Completo do Genoma
17.
Front Microbiol ; 10: 700, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068907

RESUMO

Type IV pili are evolutionarily conserved cell surface filaments that promote surface adhesion and cell aggregation providing bacteria and archaea protection from a variety of stress conditions. In fact, prokaryotic genomes frequently contain several copies of the core biosynthesis genes, pilB and pilC, encoding an ATPase and membrane anchor, respectively. Recent phylogenetic analyses suggest that in haloarchaea, a subset of pilB-C paralogs, such as the Haloferax volcanii pilB1-C1, were gained via horizontal transfer from the crenarchaea, while the co-regulated type IV pilus subunits, the pilins, evolved by duplication, followed by diversification of the ancestral euryarchaeal pilins. Here, we report the identification of an H. volcanii pilB1 transposon mutant that exhibits an adhesion defect in defined media. A similar defect observed in an H. volcanii ∆pilB1-C1 strain can be rescued by expressing pilB1-C1 in trans. However, these proteins cannot rescue the severe adhesion defect of a previously reported ∆pilB3-C3 strain. Conversely, pilB3-C3, which are not predicted to have been laterally transferred, expressed in trans can rescue the adhesion defect of a ∆pilB1-C1 strain. This cross-complementation supports the proposed hybrid origin of the operon containing pilB1-C1 and shows that at least certain euryarchaeal PilB paralogs can work with different pilin sets. Efficient recognition of the euryarchaeal pilins by the crenarchaeal PilB1-C1 may have required some degree of pilin modification, but perhaps the modifications were minor enough that PilB3 recognition of these pilins was not precluded, resulting in modular evolution and an extensive combinatorial diversity that allows for adaptation to a variety of stress conditions and attachment to varied surfaces.

18.
Trends Microbiol ; 27(1): 86-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30459094

RESUMO

In this infographic we present the main tools available for the halophilic archaeon Haloferax volcanii, which have enabled successful research on its biology, including its genetics, proteostasis, cell surface structures, metabolic pathways, and adaptation to high salt environments. Isolated from the Dead Sea in 1975, Haloferax volcanii thrives in high salt environments and has emerged as an important archaeal model system. An extensive repertoire of genetic, molecular biological, and biochemical tools has been developed for this fast-growing, easily cultivated haloarchaeon, including expression vectors and gene-deletion strategies, including CRISPR. Its low mutation rate and ability to grow on defined media allow straightforward application of methods such as metabolic labeling, and the sequenced genome laid the foundation for transcriptomics and proteomics studies. These tools have allowed examination of key pathways such as transcription, noncoding RNAs, protein synthesis and degradation, protein glycosylation, motility, and biofilm formation. With the collaborative spirit of the H. volcanii community, this model system has become invaluable not only for enhancing our understanding of archaea but also for improving the development of biotech applications.


Assuntos
Genética Microbiana/métodos , Haloferax volcanii/genética , Haloferax volcanii/fisiologia , Biologia Molecular/métodos , Genômica/métodos , Haloferax volcanii/classificação , Haloferax volcanii/isolamento & purificação , Redes e Vias Metabólicas/genética , Proteômica/métodos
19.
FEMS Microbiol Rev ; 42(5): 694-717, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29912330

RESUMO

Cell surfaces are critical for diverse functions across all domains of life, from cell-cell communication and nutrient uptake to cell stability and surface attachment. While certain aspects of the mechanisms supporting the biosynthesis of the archaeal cell surface are unique, likely due to important differences in cell surface compositions between domains, others are shared with bacteria or eukaryotes or both. Based on recent studies completed on a phylogenetically diverse array of archaea, from a wide variety of habitats, here we discuss advances in the characterization of mechanisms underpinning archaeal cell surface biogenesis. These include those facilitating co- and post-translational protein targeting to the cell surface, transport into and across the archaeal lipid membrane, and protein anchoring strategies. We also discuss, in some detail, the assembly of specific cell surface structures, such as the archaeal S-layer and the type IV pili. We will highlight the importance of post-translational protein modifications, such as lipid attachment and glycosylation, in the biosynthesis as well as the regulation of the functions of these cell surface structures and present the differences and similarities in the biogenesis of type IV pili across prokaryotic domains.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/biossíntese , Proteínas de Membrana/biossíntese , Processamento de Proteína Pós-Traducional , Proteínas Arqueais/metabolismo , Proteínas de Membrana/metabolismo
20.
Mol Microbiol ; 108(3): 276-287, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29465796

RESUMO

Proper protein anchoring is key to the biogenesis of prokaryotic cell surfaces, dynamic, resilient structures that play crucial roles in various cell processes. A novel surface protein anchoring mechanism in Haloferax volcanii depends upon the peptidase archaeosortase A (ArtA) processing C-termini of substrates containing C-terminal tripartite structures and anchoring mature substrates to the cell membrane via intercalation of lipid-modified C-terminal amino acid residues. While this membrane protein lacks clear homology to soluble sortase transpeptidases of Gram-positive bacteria, which also process C-termini of substrates whose C-terminal tripartite structures resemble those of ArtA substrates, archaeosortases do contain conserved cysteine, arginine and arginine/histidine/asparagine residues, reminiscent of His-Cys-Arg residues of sortase catalytic sites. The study presented here shows that ArtAWT -GFP expressed in trans complements ΔartA growth and motility phenotypes, while alanine substitution mutants, Cys173 (C173A), Arg214 (R214A) or Arg253 (R253A), and the serine substitution mutant for Cys173 (C173S), fail to complement these phenotypes. Consistent with sortase active site replacement mutants, ArtAC173A -GFP, ArtAC173S -GFP and ArtAR214A -GFP cannot process substrates, while replacement of the third residue, ArtAR253A -GFP retains some processing activity. These findings support the view that similarities between certain aspects of the structures and functions of the sortases and archaeosortases are the result of convergent evolution.


Assuntos
Aminoaciltransferases/metabolismo , Cisteína Endopeptidases/metabolismo , Haloferax volcanii/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/genética , Archaea/genética , Proteínas Arqueais/metabolismo , Arginina/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Catálise , Domínio Catalítico , Sequência Conservada/genética , Cisteína/metabolismo , Cisteína Endopeptidases/genética , Evolução Molecular , Histidina/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...