Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4177, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755196

RESUMO

Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.


Assuntos
Anticorpos Antivirais , COVID-19 , Interferons , SARS-CoV-2 , Transdução de Sinais , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Transdução de Sinais/imunologia , Interferons/metabolismo , Interferons/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Linfócitos T CD4-Positivos/imunologia , Idoso , Adulto , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética
2.
Diagn Microbiol Infect Dis ; 109(2): 116249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537504

RESUMO

Targeted Next Generation Sequencing (tNGS) and Whole Genome Sequencing (WGS) are increasingly used for genotypic drug susceptibility testing (gDST) of Mycobacterium tuberculosis. Thirty-two multi-drugs resistant and 40 drug susceptible isolates from Madagascar were tested with Deeplex® Myc-TB and WGS using the Mykrobe analysis pipeline. Sixty-four of 72 (89 %) yielded concordant categorical gDST results for drugs tested by both assays. Mykrobe didn't detect pncA K96T, pncA Q141P, pncA H51P, pncA H82R, rrs C517T and rpsL K43R mutations, which were identified as minority variants in corresponding isolates by tNGS. One discrepancy (rrs C517T) was associated with insufficient sequencing depth on WGS. Deeplex® Myc-TB didn't detect inhA G-154A which isn't covered by the assay's amplification targets. Despite those targets being included in the Deeplex® Myc-TB assay, a pncA T47A and a deletion in gid were not identified in one isolate respectively. The evaluated WGS and tNGS gDST assays show high but imperfect concordance.


Assuntos
Antituberculosos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Madagáscar , Genoma Bacteriano/genética , Mutação , Proteínas de Bactérias/genética , Técnicas de Genotipagem/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-36960087

RESUMO

Objectives: We evaluated the added value of infection control-guided, on demand, and locally performed severe acute respiratory coronavirus virus 2 (SARS-CoV-2) genomic sequencing to support outbreak investigation and control in acute-care settings. Design and setting: This 18-month prospective molecular epidemiology study was conducted at a tertiary-care hospital in Montreal, Canada. When nosocomial transmission was suspected by local infection control, viral genomic sequencing was performed locally for all putative outbreak cases. Molecular and conventional epidemiology data were correlated on a just-in-time basis to improve understanding of coronavirus disease 2019 (COVID-19) transmission and reinforce or adapt control measures. Results: Between April 2020 and October 2021, 6 outbreaks including 59 nosocomial infections (per the epidemiological definition) were investigated. Genomic data supported 7 distinct transmission clusters involving 6 patients and 26 healthcare workers. We identified multiple distinct modes of transmission, which led to reinforcement and adaptation of infection control measures. Molecular epidemiology data also refuted (n = 14) suspected transmission events in favor of community acquired but institutionally clustered cases. Conclusion: SARS-CoV-2 genomic sequencing can refute or strengthen transmission hypotheses from conventional nosocomial epidemiological investigations, and guide implementation of setting-specific control strategies. Our study represents a template for prospective, on site, outbreak-focused SARS-CoV-2 sequencing. This approach may become increasingly relevant in a COVID-19 endemic state where systematic sequencing within centralized surveillance programs is not available. Trial registration: clinicaltrials.gov identifier: NCT05411562.

4.
Sci Adv ; 7(48): eabj5629, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34826237

RESUMO

Despite advances in COVID-19 management, identifying patients evolving toward death remains challenging. To identify early predictors of mortality within 60 days of symptom onset (DSO), we performed immunovirological assessments on plasma from 279 individuals. On samples collected at DSO11 in a discovery cohort, high severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA (vRNA), low receptor binding domain­specific immunoglobulin G and antibody-dependent cellular cytotoxicity, and elevated cytokines and tissue injury markers were strongly associated with mortality, including in patients on mechanical ventilation. A three-variable model of vRNA, with predefined adjustment by age and sex, robustly identified patients with fatal outcome (adjusted hazard ratio for log-transformed vRNA = 3.5). This model remained robust in independent validation and confirmation cohorts. Since plasma vRNA's predictive accuracy was maintained at earlier time points, its quantitation can help us understand disease heterogeneity and identify patients who may benefit from new therapies.

5.
Diagn Microbiol Infect Dis ; 101(4): 115521, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34537474

RESUMO

SARS-CoV-2 whole genome sequencing is a molecular biology tool performed to support many aspects of the response to the pandemic. Freezing of primary clinical nasopharyngeal swabs and shipment to reference laboratories is usually required for sequencing. Cobas PCR Media transport medium facilitates high throughput SARS-CoV-2 RT-PCR analyses on cobas platforms. The manufacturer doesn't recommend freezing this transport medium because of risks of degrading molecular templates and impairing test results. Our objective was to compare the quality and results of SARS-CoV-2 genomic sequencing when performed on fresh or frozen samples in cobas PCR Media. Viral genome sequencing was performed using Oxford Nanopore Technologies MinION platform. Sequencing performance, quality and results did not significantly differ between fresh and frozen samples (n = 10). Freezing of cobas PCR Media does not negatively affect SARS-CoV-2 RNA sequencing results and it is therefore a suitable transport medium for outsourcing sequencing analyses to reference laboratories.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Congelamento , Reação em Cadeia da Polimerase/métodos , SARS-CoV-2/isolamento & purificação , Sequenciamento Completo do Genoma/métodos , COVID-19/virologia , Criopreservação , Genoma Viral , Humanos , Técnicas de Diagnóstico Molecular/métodos , Nasofaringe/virologia , RNA Viral/genética , SARS-CoV-2/genética
6.
Cell Death Dis ; 12(6): 538, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035216

RESUMO

Removal of apoptotic cells by phagocytes (also called efferocytosis) is a crucial process for tissue homeostasis. Professional phagocytes express a plethora of surface receptors enabling them to sense and engulf apoptotic cells, thus avoiding persistence of dead cells and cellular debris and their consequent effects. Dysregulation of efferocytosis is thought to lead to secondary necrosis and associated inflammation and immune activation. Efferocytosis in primarily murine macrophages and dendritic cells has been shown to require TAM RTKs, with MERTK and AXL being critical for clearance of apoptotic cells. The functional role of human orthologs, especially the exact contribution of each individual receptor is less well studied. Here we show that human macrophages differentiated in vitro from iPSC-derived precursor cells express both AXL and MERTK and engulf apoptotic cells. TAM RTK agonism by the natural ligand growth-arrest specific 6 (GAS6) significantly enhanced such efferocytosis. Using a newly-developed mouse model of kinase-dead MERTK, we demonstrate that MERTK kinase activity is essential for efferocytosis in peritoneal macrophages in vivo. Moreover, human iPSC-derived macrophages treated in vitro with blocking antibodies or small molecule inhibitors recapitulated this observation. Hence, our results highlight a conserved MERTK function between mice and humans, and the critical role of its kinase activity in homeostatic efferocytosis.


Assuntos
Macrófagos/fisiologia , Fagocitose/fisiologia , c-Mer Tirosina Quinase/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Ligantes , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Fosfatidilserinas/farmacologia , c-Mer Tirosina Quinase/agonistas , c-Mer Tirosina Quinase/genética
7.
J Hepatol ; 68(3): 412-420, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29079285

RESUMO

BACKGROUND & AIMS: The hallmarks of chronic HBV infection are a high viral load (HBV DNA) and even higher levels (>100-fold in excess of virions) of non-infectious membranous particles containing the tolerogenic viral S antigen (HBsAg). Currently, standard treatment effectively reduces viremia but only rarely results in a functional cure (defined as sustained HBsAg loss). There is an urgent need to identify novel therapies that reduce HBsAg levels and restore virus-specific immune responsiveness in patients. We report the discovery of a novel, potent and orally bioavailable small molecule inhibitor of HBV gene expression (RG7834). METHODS: RG7834 antiviral characteristics and selectivity against HBV were evaluated in HBV natural infection assays and in a urokinase-type plasminogen activator/severe combined immunodeficiency humanized mouse model of HBV infection, either alone or in combination with entecavir. RESULTS: Unlike nucleos(t)ide therapies, which reduce viremia but do not lead to an effective reduction in HBV antigen expression, RG7834 significantly reduced the levels of viral proteins (including HBsAg), as well as lowering viremia. Consistent with its proposed mechanism of action, time course RNA-seq analysis revealed a fast and selective reduction in HBV mRNAs in response to RG7834 treatment. Furthermore, oral treatment of HBV-infected humanized mice with RG7834 led to a mean HBsAg reduction of 1.09 log10 compared to entecavir, which had no significant effect on HBsAg levels. Combination of RG7834, entecavir and pegylated interferon α-2a led to significant reductions of both HBV DNA and HBsAg levels in humanized mice. CONCLUSION: We have identified a novel oral HBV viral gene expression inhibitor that blocks viral antigen and virion production, that is highly selective for HBV, and has a unique antiviral profile that is clearly differentiated from nucleos(t)ide analogues. LAY SUMMARY: We discovered a novel small molecule viral expression inhibitor that is highly selective for HBV and unlike current therapy inhibits the expression of viral proteins by specifically reducing HBV mRNAs. RG7834 can therefore potentially provide anti-HBV benefits and increase HBV cure rates, by direct reduction of viral agents needed to complete the viral life cycle, as well as a reduction of viral agents involved in evasion of the host immune responses.


Assuntos
Antivirais , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Vírus da Hepatite B , Hepatite B Crônica , Bibliotecas de Moléculas Pequenas , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Antivirais/farmacocinética , Disponibilidade Biológica , DNA Viral/isolamento & purificação , Modelos Animais de Doenças , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Camundongos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/efeitos adversos , Bibliotecas de Moléculas Pequenas/farmacocinética , Resultado do Tratamento , Carga Viral/efeitos dos fármacos
8.
ACS Chem Biol ; 10(12): 2697-705, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26389521

RESUMO

Inhibition of excessive Toll-like receptor 4 (TLR4) signaling is a therapeutic approach pursued for many inflammatory diseases. We report that Mannoside Glycolipid Conjugates (MGCs) selectively blocked TLR4-mediated activation of human monocytes and monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS). They potently suppressed pro-inflammatory cytokine secretion and maturation of DCs exposed to LPS, leading to impaired T cell stimulation. MGCs did not interfere with LPS and could act in a delayed manner, hours after LPS stimulation. Their inhibitory action required both the sugar heads and the lipid chain, although the nature of the sugar and the structure of the lipid tail could be modified. They blocked early signaling events at the cell membrane, enhanced internalization of CD14 receptors, and prevented colocalization of CD14 and TLR4, thereby abolishing NF-κB nuclear translocation. When the best lead conjugate was tested in a mouse model of LPS-induced acute lung inflammation, it displayed an anti-inflammatory action by suppressing the recruitment of neutrophils. Thus, MGCs could serve as promising leads for the development of selective TLR4 antagonistic agents for inflammatory diseases.


Assuntos
Glicolipídeos/farmacologia , Manosídeos/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sequência de Carboidratos , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Glicolipídeos/química , Glicolipídeos/uso terapêutico , Humanos , Lipopolissacarídeos , Manosídeos/química , Manosídeos/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Relação Estrutura-Atividade , Quinase Induzida por NF-kappaB
9.
Lipids ; 45(11): 997-1009, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20811782

RESUMO

Fatty acid synthase (FAS) is responsible for the de novo synthesis of palmitate and stearate. This enzyme is activated by insulin and T(3), and inhibited by fatty acids. In this study, we show that insulin and T(3) have an inducing effect on FAS enzymatic activity, which is synergetic when both hormones are present. Octanoate and hexanoate specifically inhibit this hormonal effect. A similar inhibitory effect is observed at the level of protein expression. Transient transfections in HepG2 cells revealed that hexanoate inhibits, at least in part, FAS at a transcriptional level targeting the T(3) response element (TRE) on the FAS promoter. The effect of C6 on FAS expression cannot be attributed to a modification of insulin receptor activation or to a decrease in T(3) entry in the cells. Using bromo-hexanoate, we determined that hexanoate needs to undergo a transformation in order to have an effect. When incubating cells with triglyceride-hexanoate or carnitine-hexanoate, no effect on the enzymatic activity induced by insulin and T(3) is observed. A similar result was obtained when cells were incubated with betulinic acid, an inhibitor of the diacylglycerol acyltransferase. However, the incubation of cells with Triacsin C, a general inhibitor of acyl-CoA synthetases, completely reversed the inhibitory effect of hexanoate. Our results suggest that in hepatic cells, hexanoate needs to be activated into a CoA derivative in order to inhibit the insulin and T(3)-induced FAS expression. This effect is partially transcriptional, targeting the TRE on the FAS promoter.


Assuntos
Caproatos/farmacologia , Ácido Graxo Sintases/biossíntese , Insulina/farmacologia , Tri-Iodotironina/farmacologia , Animais , Caproatos/farmacocinética , Células Cultivadas , Embrião de Galinha , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ativação Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Antagonistas de Hormônios/farmacologia , Humanos , Antagonistas da Insulina/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Tri-Iodotironina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...