Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667364

RESUMO

After separation on gel zymography, Drosophila melanogaster hemolymph displays gelatinase and caseinase bands of varying sizes, ranging from over 140 to 25 kDa. Qualitative and quantitative variations in these bands were observed during larval development and between different D. melanogaster strains and Drosophila species. The activities of these Drosophila hemolymph gelatinase and caseinase were strongly inhibited by serine protease inhibitors, but not by EDTA. Mass spectrometry identified over 60 serine proteases (SPs) in gel bands corresponding to the major D. melanogaster gelatinases and caseinases, but no matrix metalloproteinases (MMPs) were found. The most abundant proteases were tequila and members of the Jonah and trypsin families. However, the gelatinase bands did not show any change in the tequila null mutant. Additionally, no clear changes could be observed in D. melanogaster gel bands 24 h after injection of bacterial lipopolysaccharides (LPS) or after oviposition by Leptopilina boulardi endoparasitoid wasps. It can be concluded that the primary gelatinases and caseinases in Drosophila larval hemolymph are serine proteases (SPs) rather than matrix metalloproteinases (MMPs). Furthermore, the gelatinase pattern remains relatively stable even after short-term exposure to pathogenic challenges.

2.
R Soc Open Sci ; 10(8): 230565, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37650056

RESUMO

Behavioural avoidance has obvious benefits for animals facing environmental stressors such as pathogen-contaminated foods. Most current bioinsecticides are based on the environmental and opportunistic bacterium Bacillus thuringiensis (Bt) that kills targeted insect pests upon ingestion. While food and oviposition avoidance of Bt bioinsecticide by targeted insect species was reported, this remained to be addressed in non-target organisms, especially those affected by chronic exposure to Bt bioinsecticide such as Drosophila species. Here, using a two-choice oviposition test, we showed that female flies of three Drosophila species (four strains of D. melanogaster, D. busckii and D. suzukii) avoided laying eggs in the presence of Bt var. kurstaki bioinsecticide, with potential benefits for the offspring and female's fitness. Avoidance occurred rapidly, regardless of the fraction of the bioinsecticide suspension (spores and toxin crystals versus soluble toxins/compounds) and independently of the female motivation for egg laying. Our results suggest that, in addition to recent findings of developmental and physiological alterations upon chronic exposure to non-target Drosophila, this bioinsecticide may modify the competitive interactions between Drosophila species in treated areas and the interactions with their associated natural enemies.

3.
J Insect Physiol ; 135: 104320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34634293

RESUMO

The Drosophila endoparasitoid wasps Leptopilina boulardi and L. heterotoma (Hymenoptera: Cynipidae) are pro-ovigenic species, i.e., females contain their lifetime number of mature eggs at emergence. They are therefore able to immediately parasitize many hosts when present. In response to parasitoid oviposition, the larval host D. melanogaster can mount an immune response, encapsulation, that can destroy the parasitoid eggs. This response is counteracted by the venom the wasp injects during oviposition. Here, we estimated the amount of venom injected into a D. melanogaster host larva using immunodetection of venom proteins and we attempted to correlate this amount with the number of eggs a female can lay on successive days. The venom reservoir of L. boulardi contains enough venom for at least 100 ovipositions while that of L. heterotoma contains venom for about 16 ovipositions. While a female L. boulardi may have enough venom for three days of parasitism when 20 or 40 larval hosts were presented each day, L. heterotoma certainly needs to synthesize new venom to parasitize the number of hosts offered. Interestingly, parasitism stopped (L. boulardi), egg protection (L. heterotoma) and egg hatching decreased (both species) after three days of parasitism. Thus, although venom does not appear to be a limiting factor for parasitism, our data suggest that it may have less effectiveness on the egg protection and on egg/host development after high repetitive egg laying.


Assuntos
Drosophila melanogaster , Interações Hospedeiro-Parasita , Peçonhas , Vespas , Animais , Drosophila melanogaster/parasitologia , Feminino , Larva/parasitologia , Oviposição , Vespas/fisiologia
4.
Insects ; 12(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34357307

RESUMO

Temperature is particularly important for ectotherms, including endoparasitoid wasps that develop inside another ectotherm host. In this study, we tested the impact of three temperatures (20 °C, 25 °C and 30 °C) on the host-parasitoid immune interaction using two Drosophila host species (Drosophila melanogaster and D. yakuba) and two parasitoid lines of Leptopilina boulardi. Drosophila's immune defense against parasitoids consists of the formation of a melanized capsule surrounding the parasitoid egg. To counteract this response, Leptopilina parasitoids rely on the injection of venom during oviposition. Here, we tested the effect of temperature on parasitic success and host encapsulation capacity in response to a parasitoid egg or other foreign body. Increased temperature either promoted or did not affect the parasitic success, depending on the parasitoid-host pairs considered. The mechanisms behind the higher success seemed to vary depending on whether the temperature primarily affected the host immune response or also affected the parasitoid counter-immune response. Next, we tested the effect of parasitoid rearing temperature on its success and venom composition. Venom composition varied strongly with temperature for both parasitoid lines, partially consistent with a change in their parasitic success. Overall, temperature may have a significant impact on the host-parasitoid immune interaction.

5.
Toxins (Basel) ; 13(7)2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34357975

RESUMO

Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. In order to define the content and understand the biogenesis of these atypical vesicles, we performed a transcriptome analysis of the venom gland and a proteomic analysis of the venom and purified MpVLPs. About half of the MpVLPs and soluble venom proteins identified were unknown and no similarity with any known viral sequence was found. However, MpVLPs contained a large number of proteins labelled as metalloproteinases while the most abundant protein family in the soluble venom was that of proteins containing the Domain of Unknown Function DUF-4803. The high number of these proteins identified suggests that a large expansion of these two protein families occurred in M. pulchricornis. Therefore, although the exact mechanism of MpVLPs formation remains to be elucidated, these vesicles appear to be "metalloproteinase bombs" that may have several physiological roles in the host including modifying the functions of its immune cells. The role of DUF4803 proteins, also present in the venom of other braconids, remains to be clarified.


Assuntos
Metaloproteases/metabolismo , Venenos de Vespas/genética , Animais , Feminino , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita , Larva , Mariposas , Proteômica , Venenos de Vespas/metabolismo , Vespas
6.
Mol Ecol Resour ; 21(7): 2437-2454, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34051038

RESUMO

Molecular identification is increasingly used to speed up biodiversity surveys and laboratory experiments. However, many groups of organisms cannot be reliably identified using standard databases such as GenBank or BOLD due to lack of sequenced voucher specimens identified by experts. Sometimes a large number of sequences are available, but with too many errors to allow identification. Here, we address this problem for parasitoids of Drosophila by introducing a curated open-access molecular reference database, DROP (Drosophila parasitoids). Identifying Drosophila parasitoids is challenging and poses a major impediment to realize the full potential of this model system in studies ranging from molecular mechanisms to food webs, and in biological control of Drosophila suzukii. In DROP, genetic data are linked to voucher specimens and, where possible, the voucher specimens are identified by taxonomists and vetted through direct comparison with primary type material. To initiate DROP, we curated 154 laboratory strains, 856 vouchers, 554 DNA sequences, 16 genomes, 14 transcriptomes, and six proteomes drawn from a total of 183 operational taxonomic units (OTUs): 114 described Drosophila parasitoid species and 69 provisional species. We found species richness of Drosophila parasitoids to be heavily underestimated and provide an updated taxonomic catalogue for the community. DROP offers accurate molecular identification and improves cross-referencing between individual studies that we hope will catalyse research on this diverse and fascinating model system. Our effort should also serve as an example for researchers facing similar molecular identification problems in other groups of organisms.


Assuntos
Biodiversidade , Drosophila , Animais , Drosophila/genética , Cadeia Alimentar
7.
Insect Biochem Mol Biol ; 134: 103584, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34033897

RESUMO

In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.


Assuntos
Drosophila melanogaster , Hemócitos/imunologia , Proteínas de Membrana/isolamento & purificação , Animais , Animais Geneticamente Modificados , Moléculas de Adesão Celular/isolamento & purificação , Encapsulamento de Células , Proteínas de Drosophila/isolamento & purificação , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/parasitologia , Eletroforese em Gel Bidimensional , Feminino , Hemócitos/metabolismo , Interações Hospedeiro-Parasita/imunologia , Proteínas de Insetos/isolamento & purificação , Integrinas/isolamento & purificação , Larva/imunologia , Larva/metabolismo , Larva/parasitologia , Espectrometria de Massas , Proteômica , Transdução de Sinais
8.
Insect Sci ; 28(6): 1780-1799, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33200579

RESUMO

The pea aphid Acyrthosiphon pisum hosts different facultative symbionts (FS) which provide it with various benefits, such as tolerance to heat or protection against natural enemies (e.g., fungi, parasitoid wasps). Here, we investigated whether and how the presence of certain FS could affect phenoloxidase (PO) activity, a key component of insect innate immunity, under normal and stressed conditions. For this, we used clones of A. pisum of different genetic backgrounds (LL01, YR2 and T3-8V1) lacking FS or harboring one or two (Regiella insecticola, Hamiltonella defensa, Serratia symbiotica + Rickettsiella viridis). Gene expression and proteomics analyses of the aphid hemolymph indicated that the two A. pisum POs, PPO1 and PPO2, are expressed and translated into proteins. The level of PPO genes expression as well as the amount of PPO proteins and phenoloxidase activity in the hemolymph depended on both the aphid genotype and FS species. In particular, H. defensa and R. insecticola, but not S. symbiotica + R. viridis, caused a sharp decrease in PO activity by interfering with both transcription and translation. The microinjection of different types of stressors (yeast, Escherichia coli, latex beads) in the YR2 lines hosting different symbionts affected the survival rate of aphids and, in most cases, also decreased the expression of PPO genes after 24 h. The amount and activity of PPO proteins varied according to the type of FS and stressor, without clear corresponding changes in gene expression. These data demonstrate that the presence of certain FS influences an important component of pea aphid immunity.


Assuntos
Afídeos , Enterobacteriaceae , Monofenol Mono-Oxigenase , Simbiose , Animais , Afídeos/enzimologia , Afídeos/imunologia , Afídeos/microbiologia , Imunidade , Monofenol Mono-Oxigenase/metabolismo , Pisum sativum
9.
Virulence ; 11(1): 1512-1521, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33135553

RESUMO

Venosomes are extracellular vesicles found in the venom of Leptopilina endoparasitoids wasps, which transport and target virulence factors to impair the parasitoid egg encapsulation by the lamellocytes of their Drosophila melanogaster host larva. Using the co-immunolocalization of fluorescent L. boulardi venosomes and one of the putative-transported virulence factors, LbGAP, with known markers of cellular endocytosis, we show that venosomes endocytosis by lamellocytes is not a process dependent on clathrin or macropinocytosis and internalization seems to bypass the early endosomal compartment Rab5. After internalization, LbGAP colocalizes strongly with flotillin-1 and the GPI-anchored protein Atilla/L1 (a lamellocyte surface marker) suggesting that entry occurs via a flotillin/lipid raft-dependent pathway. Once internalized, venosomes reach all intracellular compartments, including late and recycling endosomes, lysosomes, and the endoplasmic reticulum network. Venosomes therefore enter their target cells by a specific mechanism and the virulence factors are widely distributed in the lamellocytes' compartments to impair their functions.


Assuntos
Drosophila melanogaster/metabolismo , Drosophila melanogaster/parasitologia , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Parasita , Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Venenos de Vespas/metabolismo , Vespas/metabolismo , Animais , Drosophila melanogaster/citologia , Endocitose , Vesículas Extracelulares/química , Feminino , Larva/metabolismo , Larva/parasitologia , Redes e Vias Metabólicas , Fatores de Virulência/metabolismo
10.
Sci Rep ; 10(1): 16241, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004867

RESUMO

Bioinsecticides based on Bacillus thuringiensis (Bt) spores and toxins are increasingly popular alternative solutions to control insect pests, with potential impact of their accumulation in the environment on non-target organisms. Here, we tested the effects of chronic exposure to commercial Bt formulations (Bt var. kurstaki and israelensis) on eight non-target Drosophila species present in Bt-treated areas, including D. melanogaster (four strains). Doses up to those recommended for field application (~ 106 Colony Forming Unit (CFU)/g fly medium) did not impact fly development, while no fly emerged at ≥ 1000-fold this dose. Doses between 10- to 100-fold the recommended one increased developmental time and decreased adult emergence rates in a dose-dependent manner, with species-and strain-specific effect amplitudes. Focusing on D. melanogaster, development alterations were due to instar-dependent larval mortality, and the longevity and offspring number of adult flies exposed to bioinsecticide throughout their development were moderately influenced. Our data also suggest a synergy between the formulation compounds (spores, cleaved toxins, additives) might induce the bioinsecticide effects on larval development. Although recommended doses had no impact on non-target Drosophila species, misuse or local environmental accumulation of Bt bioinsecticides could have side-effects on fly populations with potential implications for their associated communities.


Assuntos
Toxinas de Bacillus thuringiensis/farmacologia , Drosophila/efeitos dos fármacos , Controle Biológico de Vetores , Animais , Drosophila melanogaster/efeitos dos fármacos , Feminino , Larva , Masculino , Controle Biológico de Vetores/métodos
11.
Insects ; 11(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066180

RESUMO

Bioinsecticides made from the bacterium Bacillus thuringiensis (Bt) are the bestselling bioinsecticide worldwide. Among Bt bioinsecticides, those based on the strain Bt subsp. kurstaki (Btk) are widely used in farming to specifically control pest lepidopteran larvae. Although there is much evidence of the lack of acute lethality of Btk products for non-target animals, only scarce data are available on their potential non-lethal developmental adverse effects. Using a concentration that could be reached in the field upon sprayings, we show that Btk products impair growth and developmental time of the non-target dipteran Drosophila melanogaster. We demonstrate that these effects are mediated by the synergy between Btk bacteria and Btk insecticidal toxins. We further show that Btk bioinsecticides trigger intestinal cell death and alter protein digestion without modifying the food intake and feeding behavior of the larvae. Interestingly, these harmful effects can be mitigated by a protein-rich diet or by adding the probiotic bacterium Lactobacillus plantarum into the food. Finally, we unravel two new cellular mechanisms allowing the larval midgut to maintain its integrity upon Btk aggression: First the flattening of surviving enterocytes and second, the generation of new immature cells arising from the adult midgut precursor cells. Together, these mechanisms participate to quickly fill in the holes left by the dying enterocytes.

12.
Proc Biol Sci ; 287(1934): 20201493, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32873201

RESUMO

Legumes can meet their nitrogen requirements through root nodule symbiosis, which could also trigger plant systemic resistance against pests. The pea aphid Acyrthosiphon pisum, a legume pest, can harbour different facultative symbionts (FS) influencing various traits of their hosts. It is therefore worth determining if and how the symbionts of the plant and the aphid modulate their interaction. We used different pea aphid lines without FS or with a single one (Hamiltonella defensa, Regiella insecticola, Serratia symbiotica) to infest Medicago truncatula plants inoculated with Sinorhizobium meliloti (symbiotic nitrogen fixation, SNF) or supplemented with nitrate (non-inoculated, NI). The growth of SNF and NI plants was reduced by aphid infestation, while aphid weight (but not survival) was lowered on SNF compared to NI plants. Aphids strongly affected the plant nitrogen fixation depending on their symbiotic status, suggesting indirect relationships between aphid- and plant-associated microbes. Finally, all aphid lines triggered expression of Pathogenesis-Related Protein 1 (PR1) and Proteinase Inhibitor (PI), respective markers for salicylic and jasmonic pathways, in SNF plants, compared to only PR1 in NI plants. We demonstrate that the plant symbiotic status influences plant-aphid interactions while that of the aphid can modulate the amplitude of the plant's defence response.


Assuntos
Afídeos/fisiologia , Medicago truncatula/fisiologia , Fixação de Nitrogênio/fisiologia , Animais , Nitratos , Nitrogênio/metabolismo , Ácido Salicílico , Serratia , Simbiose
13.
Insects ; 11(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545289

RESUMO

The pupal ectoparasitoid Pachycrepoideus vindemiae injects venom into its fly hosts prior to oviposition. We have shown that this venom causes immune suppression in Drosophila melanogaster pupa but the mechanism involved remained unclear. Here, we show using transgenic D. melanogaster with fluorescent hemocytes that the in vivo number of plasmatocytes and lamellocytes decreases after envenomation while it has a limited effect on crystal cells. After in vitro incubation with venom, the cytoskeleton of plasmatocytes underwent rearrangement with actin aggregation around the internal vacuoles, which increased with incubation time and venom concentration. The venom also decreased the lamellocytes adhesion capacity and induced nucleus fragmentation. Electron microscopy observation revealed that the shape of the nucleus and mitochondria became irregular after in vivo incubation with venom and confirmed the increased vacuolization with the formation of autophagosomes-like structures. Almost all venom-treated hemocytes became positive for TUNEL assays, indicating massive induced apoptosis. In support, the caspase inhibitor Z-VAD-FMK attenuated the venom-induced morphological changes suggesting an involvement of caspases. Our data indicate that P. vindemiae venom inhibits D. melanogaster host immunity by inducing strong apoptosis in hemocytes. These assays will help identify the individual venom component(s) responsible and the precise mechanism(s)/pathway(s) involved.

14.
BMC Genomics ; 21(1): 376, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471448

RESUMO

BACKGROUND: Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS: We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS: These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.


Assuntos
Afídeos/genética , Genômica , Vespas/genética , Animais , Afídeos/imunologia , Metilação de DNA/genética , Sequência Rica em GC , Proteínas de Insetos/genética , Processos de Determinação Sexual/genética , Peçonhas/genética , Vespas/imunologia
15.
Toxins (Basel) ; 11(11)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671900

RESUMO

Parasitoid wasps rely primarily on venom to suppress the immune response and regulate the physiology of their host. Intraspecific variability of venom protein composition has been documented in some species, but its evolutionary potential is poorly understood. We performed an experimental evolution initiated with the crosses of two lines of Leptopilinaboulardi of different venom composition to generate variability and create new combinations of venom factors. The offspring were maintained for 10 generations on two strains of Drosophila melanogaster differing in resistance/susceptibility to the parental parasitoid lines. The venom composition of individuals was characterized by a semi-automatic analysis of 1D SDS-PAGE electrophoresis protein profiles whose accuracy was checked by Western blot analysis of well-characterized venom proteins. Results made evident a rapid and differential evolution of the venom composition on both hosts and showed that the proteins beneficial on one host can be costly on the other. Overall, we demonstrated the capacity of rapid evolution of the venom composition in parasitoid wasps, important regulators of arthropod populations, suggesting a potential for adaptation to new hosts. Our approach also proved relevant in identifying, among the diversity of venom proteins, those possibly involved in parasitism success and whose role deserves to be deepened.


Assuntos
Evolução Molecular , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Parasita/genética , Fatores de Virulência/genética , Venenos de Vespas/química , Vespas/genética , Vespas/parasitologia , Animais
16.
Front Immunol ; 10: 1688, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379874

RESUMO

Endoparasitoid wasps, which lay eggs inside the bodies of other insects, use various strategies to protect their offspring from the host immune response. The hymenopteran species of the genus Leptopilina, parasites of Drosophila, rely on the injection of a venom which contains proteins and peculiar vesicles (hereafter venosomes). We show here that the injection of purified L. boulardi venosomes is sufficient to impair the function of the Drosophila melanogaster lamellocytes, a hemocyte type specialized in the defense against wasp eggs, and thus the parasitic success of the wasp. These venosomes seem to have a unique extracellular biogenesis in the wasp venom apparatus where they acquire specific secreted proteins/virulence factors and act as a transport system to deliver these compounds into host lamellocytes. The level of venosomes entry into lamellocytes of different Drosophila species was correlated with the rate of parasitism success of the wasp, suggesting that this venosome-cell interaction may represent a new evolutionary level of host-parasitoid specificity.


Assuntos
Drosophila melanogaster/imunologia , Vesículas Extracelulares/imunologia , Especificidade de Hospedeiro/imunologia , Fatores de Virulência/imunologia , Venenos de Vespas/imunologia , Vespas/imunologia , Animais , Hemócitos/imunologia , Interações Hospedeiro-Parasita
17.
Front Physiol ; 10: 603, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156469

RESUMO

Host-parasitoid interactions are among the most studied interactions between invertebrates because of their fundamental interest - the evolution of original traits in parasitoids - and applied, parasitoids being widely used in biological control. Immunity, and in particular cellular immunity, is central in these interactions, the host encapsulation response being specific for large foreign bodies such as parasitoid eggs. Although already well studied in this species, recent data on Drosophila melanogaster have unquestionably improved knowledge of invertebrate cellular immunity. At the same time, the venomics of parasitoids has expanded, notably those of Drosophila. Here, we summarize and discuss these advances, with a focus on an emerging "time-dependent" view of interactions outcome at the intra- and interspecific level. We also present issues still in debate and prospects for study. Data on the Drosophila-parasitoid model paves the way to new concepts in insect immunity as well as parasitoid wasp strategies to overcome it.

18.
PLoS One ; 13(8): e0201573, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30070997

RESUMO

Drosophila suzukii (the spotted-wing Drosophila) appears to be unsuitable for the development of most Drosophila larval endoparasitoids, be they sympatric or not. Here, we questioned the physiological bases of this widespread failure by characterizing the interactions between D. suzukii and various parasitoid species (Asobara japonica, Leptopilina boulardi, Leptopilina heterotoma and Leptopilina victoriae) and comparing them with those observed with D. melanogaster, a rather appropriate host. All parasitoids were able to oviposit in L1 and L2 larval stages of both hosts but their propensity to parasitize was higher on D. melanogaster. A. japonica and, to a much lesser extent, L. heterotoma, were the two species able to successfully develop in D. suzukii, the failure of the parasitism resulting either in the parasitoid encapsulation (notably with L. heterotoma) or the host and parasitoid deaths (especially with L. boulardi and L. victoriae). Compared to D. melanogaster, encapsulation in D. suzukii was strongly delayed and led, if successful, to the production of much larger capsules in surviving flies and, in the event of failure, to the death of both partners because of an uncontrolled melanization. The results thus revealed a different timing of the immune response to parasitoids in D. suzukii compared to D. melanogaster with a lose-lose outcome for parasitoids (generally unsuccessful development) and hosts (high mortality and possible reduction of the fitness of survivors). Finally, these results might suggest that some European endoparasitoids of Drosophila interact with this pest in the field in an unmeasurable way, since they kill their host without reproductive success.


Assuntos
Drosophila/parasitologia , Vespas/fisiologia , Animais , Drosophila/crescimento & desenvolvimento , Drosophila/imunologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/imunologia , Drosophila melanogaster/parasitologia , Feminino , Interações Hospedeiro-Parasita , Larva/parasitologia , Masculino , Oviposição , Fatores de Tempo
19.
Insects ; 8(4)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144440

RESUMO

The spotted wing Drosophila, Drosophila suzukii (Ds), became a major economic pest for fruit production since its establishment in Europe and America. Among potential control methods, only classical biological control appears to be a mean of sustainably regulating Ds in both cultivated and natural habitats. In the frame of risk assessment, pre-release surveys were carried out in a restricted but highly heterogeneous area in the south-east of France using traps and deliberate field exposures of Ds and D. melanogaster larvae/pupae. Although Ds abundance varied according to sampling methods, it was found to be pervasive and to produce offspring and adults in most conditions (spatial and seasonal). Its main limits are some specific abiotic conditions (i.e., desiccation) as well as interspecific competition. Indeed, Ds mostly co-occurred with D. busckii and D. hydei, probably due to common phenology and/or ecological requirements. These two species thus deserve more attention for risk assessment. The main indigenous parasitoids collected belonged to two pupal species, Trichopria cf drosophilae and Pachycrepoideus vindemmiae, but their presence was observed late in the autumn and mainly in cultivated areas. Results are discussed in a comparison of the methodological approaches for monitoring Drosophilids and the benefits-risks assessment of classical biological control.

20.
PLoS One ; 12(7): e0181940, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28742131

RESUMO

Aspartylglucosaminidase (AGA) is a low-abundance intracellular enzyme that plays a key role in the last stage of glycoproteins degradation, and whose deficiency leads to human aspartylglucosaminuria, a lysosomal storage disease. Surprisingly, high amounts of AGA-like proteins are secreted in the venom of two phylogenetically distant hymenopteran parasitoid wasp species, Asobara tabida (Braconidae) and Leptopilina heterotoma (Cynipidae). These venom AGAs have a similar domain organization as mammalian AGAs. They share with them key residues for autocatalysis and activity, and the mature α- and ß-subunits also form an (αß)2 structure in solution. Interestingly, only one of these AGAs subunits (α for AtAGA and ß for LhAGA) is glycosylated instead of the two subunits for lysosomal human AGA (hAGA), and these glycosylations are partially resistant to PGNase F treatment. The two venom AGAs are secreted as fully activated enzymes, they have a similar aspartylglucosaminidase activity and are both also efficient asparaginases. Once AGAs are injected into the larvae of the Drosophila melanogaster host, the asparaginase activity may play a role in modulating their physiology. Altogether, our data provide new elements for a better understanding of the secretion and the role of venom AGAs as virulence factors in the parasitoid wasps' success.


Assuntos
Aspartilglucosilaminase/metabolismo , Venenos de Vespas/metabolismo , Vespas/enzimologia , Sequência de Aminoácidos , Animais , Aspartilglucosilaminase/química , Drosophila melanogaster/parasitologia , Modelos Moleculares , Alinhamento de Sequência , Venenos de Vespas/química , Vespas/química , Vespas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...