Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Sci Adv ; 10(13): eadm9859, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536921

RESUMO

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glutamina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidores Enzimáticos/uso terapêutico , Mutação
2.
medRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260492

RESUMO

Background: Delta-like ligand 3 (DLL3) is aberrantly expressed on the cell surface in many neuroendocrine cancers including small cell lung cancer (SCLC) and neuroendocrine prostate cancer (NEPC). Several therapeutic agents targeting DLL3 are in active clinical development. Molecular imaging of DLL3 would enable non-invasive diagnostic assessment to inform the use of DLL3-targeting therapeutics or to assess disease treatment response. Methods: We conducted a first-in-human immuno-positron emission tomography (immunoPET) imaging study of [89Zr]Zr-DFO-SC16.56, composed of the anti-DLL3 antibody SC16.56 conjugated to desferrioxamine (DFO) and the positron-emitting radionuclide zirconium-89, in 18 patients with neuroendocrine cancers. An initial cohort of three patients received 1-2 mCi of [89Zr]Zr-DFO-SC16.56 at a total mass dose of 2·5 mg and underwent serial PET and computed tomography (CT) imaging over the course of one week. Radiotracer clearance, tumor uptake, and radiation dosimetry were estimated. An expansion cohort of 15 additional patients were imaged using the initial activity and mass dose. Retrospectively collected tumor biopsies were assessed for DLL3 by immunohistochemistry (IHC) (n = 16). Findings: Imaging of the initial 3 SCLC patients demonstrated strong tumor-specific uptake of [89Zr]Zr-DFO-SC16.56, with similar tumor: background ratios at days 3, 4, and 7 post-injection. Serum clearance was bi-phasic with an estimated terminal clearance half-time of 119 h. The sites of highest background tracer uptake were blood pool and liver. The normal tissue receiving the highest radiation dose was liver; 1·8 mGy/MBq, and the effective dose was 0.49 mSv/MBq. Tumoral uptake varied both between and within patients, and across anatomic sites, with a wide range in SUVmax (from 3·3 to 66·7). Tumor uptake by [89Zr]Zr-DFO-SC16.56 was associated with protein expression in all cases. Two non-avid DLL3 NEPC cases by PET scanning demonstrated the lowest DLL3 expression by tumor immunohistochemistry. Only one patient had a grade 1 allergic reaction, while no grade ≥2 adverse events noted. Interpretation: DLL3 PET imaging of patients with neuroendocrine cancers is safe and feasible. These results demonstrate the potential utility of [89Zr]Zr-DFO-SC16.56 for non-invasive in vivo detection of DLL3-expressing malignancies. Funding: Supported by NIH R01CA213448 (JTP), R35 CA263816 (CMR), U24 CA213274 (CMR), R35 CA232130 (JSL), and a Prostate Cancer Foundation TACTICAL Award (JSL), Scannell foundation. The Radiochemistry and Molecular Imaging Probes Core Facility is supported by NIH P30 CA08748.

3.
Cell Rep ; 42(11): 113295, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37889752

RESUMO

Lung cancer treatment has benefited greatly through advancements in immunotherapies. However, immunotherapy often fails in patients with specific mutations like KEAP1, which are frequently found in lung adenocarcinoma. We established an antigenic lung cancer model and used it to explore how Keap1 mutations remodel the tumor immune microenvironment. Using single-cell technology and depletion studies, we demonstrate that Keap1-mutant tumors diminish dendritic cell and T cell responses driving immunotherapy resistance. This observation was corroborated in patient samples. CRISPR-Cas9-mediated gene targeting revealed that hyperactivation of the NRF2 antioxidant pathway is responsible for diminished immune responses in Keap1-mutant tumors. Importantly, we demonstrate that combining glutaminase inhibition with immune checkpoint blockade can reverse immunosuppression, making Keap1-mutant tumors susceptible to immunotherapy. Our study provides new insight into the role of KEAP1 mutations in immune evasion, paving the way for novel immune-based therapeutic strategies for KEAP1-mutant cancers.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Evasão da Resposta Imune , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Mutação/genética , Imunoterapia , Microambiente Tumoral
4.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425844

RESUMO

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We have previously shown that KEAP1 mutant tumors have increased glutamine consumption to support the metabolic rewiring associated with NRF2 activation. Here, using patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the novel glutamine antagonist DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumor growth by inhibiting glutamine-dependent nucleotide synthesis and promoting anti-tumor CD4 and CD8 T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we discover that DRP-104 reverses T cell exhaustion and enhances the function of CD4 and CD8 T cells culminating in an improved response to anti-PD1 therapy. Our pre-clinical findings provide compelling evidence that DRP-104, currently in phase 1 clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer. Furthermore, we demonstrate that by combining DRP-104 with checkpoint inhibition, we can achieve suppression of tumor intrinsic metabolism and augmentation of anti-tumor T cell responses.

5.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131623

RESUMO

LKB1/STK11 is a serine/threonine kinase that plays a major role in controlling cell metabolism, resulting in potential therapeutic vulnerabilities in LKB1-mutant cancers. Here, we identify the NAD + degrading ectoenzyme, CD38, as a new target in LKB1-mutant NSCLC. Metabolic profiling of genetically engineered mouse models (GEMMs) revealed that LKB1 mutant lung cancers have a striking increase in ADP-ribose, a breakdown product of the critical redox co-factor, NAD + . Surprisingly, compared with other genetic subsets, murine and human LKB1-mutant NSCLC show marked overexpression of the NAD+-catabolizing ectoenzyme, CD38 on the surface of tumor cells. Loss of LKB1 or inactivation of Salt-Inducible Kinases (SIKs)-key downstream effectors of LKB1- induces CD38 transcription induction via a CREB binding site in the CD38 promoter. Treatment with the FDA-approved anti-CD38 antibody, daratumumab, inhibited growth of LKB1-mutant NSCLC xenografts. Together, these results reveal CD38 as a promising therapeutic target in patients with LKB1 mutant lung cancer. SIGNIFICANCE: Loss-of-function mutations in the LKB1 tumor suppressor of lung adenocarcinoma patients and are associated with resistance to current treatments. Our study identified CD38 as a potential therapeutic target that is highly overexpressed in this specific subtype of cancer, associated with a shift in NAD homeostasis.

6.
J Thorac Oncol ; 18(9): 1222-1232, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37210008

RESUMO

INTRODUCTION: A small percentage of patients with SCLC experience durable responses to immune checkpoint blockade (ICB). Defining determinants of immune response may nominate strategies to broaden the efficacy of immunotherapy in patients with SCLC. Prior studies have been limited by small numbers or concomitant chemotherapy administration. METHODS: CheckMate 032, a multicenter, open-label, phase 1/2 trial evaluating nivolumab alone or with ipilimumab was the largest study of ICB alone in patients with SCLC. We performed comprehensive RNA sequencing of 286 pretreatment SCLC tumor samples, assessing outcome on the basis of defined SCLC subtypes (SCLC-A, -N, -P, and -Y), and expression signatures associated with durable benefit, defined as progression-free survival more than or equal to 6 months. Potential biomarkers were further explored by immunohistochemistry. RESULTS: None of the subtypes were associated with survival. Antigen presentation machinery signature (p = 0.000032) and presence of more than or equal to 1% infiltrating CD8+ T cells by immunohistochemistry (hazard ratio = 0.51, 95% confidence interval: 0.27-0.95) both correlated with survival in patients treated with nivolumab. Pathway enrichment analysis revealed the association between durable benefit from immunotherapy and antigen processing and presentation. Analysis of epigenetic determinants of antigen presentation identified LSD1 gene expression as a correlate of worse survival outcomes for patients treated with either nivolumab or the combination of nivolumab and ipilimumab. CONCLUSIONS: Tumor antigen processing and presentation is a key correlate of ICB efficacy in patients with SCLC. As antigen presentation machinery is frequently epigenetically suppressed in SCLC, this study defines a targetable mechanism by which we might improve clinical benefit of ICB for patients with SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/patologia , Nivolumabe/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/patologia , Ipilimumab/uso terapêutico , Apresentação de Antígeno , Imunoterapia
7.
Cancer Cell ; 41(1): 88-105.e8, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36525973

RESUMO

Lung squamous cell carcinoma (LUSC) represents a major subtype of lung cancer with limited treatment options. KMT2D is one of the most frequently mutated genes in LUSC (>20%), and yet its role in LUSC oncogenesis remains unknown. Here, we identify KMT2D as a key regulator of LUSC tumorigenesis wherein Kmt2d deletion transforms lung basal cell organoids to LUSC. Kmt2d loss increases activation of receptor tyrosine kinases (RTKs), EGFR and ERBB2, partly through reprogramming the chromatin landscape to repress the expression of protein tyrosine phosphatases. These events provoke a robust elevation in the oncogenic RTK-RAS signaling. Combining SHP2 inhibitor SHP099 and pan-ERBB inhibitor afatinib inhibits lung tumor growth in Kmt2d-deficient LUSC murine models and in patient-derived xenografts (PDXs) harboring KMT2D mutations. Our study identifies KMT2D as a pivotal epigenetic modulator for LUSC oncogenesis and suggests that KMT2D loss renders LUSC therapeutically vulnerable to RTK-RAS inhibition.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Transformação Celular Neoplásica , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas ras/antagonistas & inibidores , Proteínas ras/metabolismo
8.
Genome Med ; 14(1): 127, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380343

RESUMO

BACKGROUND: Diffuse pleural mesothelioma (DPM) is an aggressive malignancy that, despite recent treatment advances, has unacceptably poor outcomes. Therapeutic research in DPM is inhibited by a paucity of preclinical models that faithfully recapitulate the human disease. METHODS: We established 22 patient-derived xenografts (PDX) from 22 patients with DPM and performed multi-omic analyses to deconvolute the mutational landscapes, global expression profiles, and molecular subtypes of these PDX models and compared features to those of the matched primary patient tumors. Targeted next-generation sequencing (NGS; MSK-IMPACT), immunohistochemistry, and histologic subtyping were performed on all available samples. RNA sequencing was performed on all available PDX samples. Clinical outcomes and treatment history were annotated for all patients. Platinum-doublet progression-free survival (PFS) was determined from the start of chemotherapy until radiographic/clinical progression and grouped into < or ≥ 6 months. RESULTS: PDX models were established from both treatment naïve and previously treated samples and were noted to closely resemble the histology, genomic landscape, and proteomic profiles of the parent tumor. After establishing the validity of the models, transcriptomic analyses demonstrated overexpression in WNT/ß-catenin, hedgehog, and TGF-ß signaling and a consistent suppression of immune-related signaling in PDXs derived from patients with worse clinical outcomes. CONCLUSIONS: These data demonstrate that DPM PDX models closely resemble the genotype and phenotype of parental tumors, and identify pathways altered in DPM for future exploration in preclinical studies.


Assuntos
Mesotelioma , Transcriptoma , Animais , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto , Xenoenxertos , Proteômica , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Genômica , Modelos Animais de Doenças
9.
STAR Protoc ; 3(4): 101776, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36313536

RESUMO

We report a protocol for obtaining high-quality single-cell transcriptomics data from human lung biospecimens acquired from core needle biopsies, fine-needle aspirates, surgical resection, and pleural effusions. The protocol relies upon the brief mechanical and enzymatic disruption of tissue, enrichment of live cells by fluorescence-activated cell sorting (FACS), and droplet-based single-cell RNA sequencing (scRNA-seq). The protocol also details a procedure for analyzing the scRNA-seq data. For complete details on the use and execution of this protocol, please refer to Chan et al. (2021).


Assuntos
Perfilação da Expressão Gênica , Pulmão , Humanos , Análise de Sequência de RNA/métodos , RNA-Seq , Perfilação da Expressão Gênica/métodos , Biópsia por Agulha Fina/métodos
10.
Nat Cancer ; 3(10): 1260-1270, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941262

RESUMO

Small cell lung cancer (SCLC) is characterized by morphologic, epigenetic and transcriptomic heterogeneity. Subtypes based upon predominant transcription factor expression have been defined that, in mouse models and cell lines, exhibit potential differential therapeutic vulnerabilities, with epigenetically distinct SCLC subtypes also described. The clinical relevance of these subtypes is unclear, due in part to challenges in obtaining tumor biopsies for reliable profiling. Here we describe a robust workflow for genome-wide DNA methylation profiling applied to both patient-derived models and to patients' circulating cell-free DNA (cfDNA). Tumor-specific methylation patterns were readily detected in cfDNA samples from patients with SCLC and were correlated with survival outcomes. cfDNA methylation also discriminated between the transcription factor SCLC subtypes, a precedent for a liquid biopsy cfDNA-methylation approach to molecularly subtype SCLC. Our data reveal the potential clinical utility of cfDNA methylation profiling as a universally applicable liquid biopsy approach for the sensitive detection, monitoring and molecular subtyping of patients with SCLC.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Camundongos , Ácidos Nucleicos Livres/genética , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Epigenoma/genética , Metilação de DNA/genética , Neoplasias Pulmonares/diagnóstico , Fatores de Transcrição/genética
11.
J Lipid Res ; 63(9): 100257, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931202

RESUMO

The microsomal triglyceride transfer protein (MTP) is essential for the secretion of apolipoprotein B (apoB)48- and apoB100-containing lipoproteins in the intestine and liver, respectively. Loss of function mutations in MTP cause abetalipoproteinemia. Heterologous cells are used to evaluate the function of MTP in apoB secretion to avoid background MTP activity in liver and intestine-derived cells. However, these systems are not suitable to study the role of MTP in the secretion of apoB100-containing lipoproteins, as expression of a large apoB100 peptide using plasmids is difficult. Here, we report a new cell culture model amenable for studying the role of different MTP mutations on apoB100 secretion. The endogenous MTTP gene was ablated in human hepatoma Huh-7 cells using single guide RNA and RNA-guided clustered regularly interspaced short palindromic repeats-associated sequence 9 ribonucleoprotein complexes. We successfully established three different clones that did not express any detectable MTTP mRNA or MTP protein or activity. These cells were defective in secreting apoB-containing lipoproteins and accumulated lipids. Furthermore, we show that transfection of these cells with plasmids expressing human MTTP cDNA resulted in the expression of MTP protein, restoration of triglyceride transfer activity, and secretion of apoB100. Thus, these new cells can be valuable tools for studying structure-function of MTP, roles of different missense mutations in various lipid transfer activities of MTP, and their ability to support apoB100 secretion, compensatory changes associated with loss of MTP, and in the identification of novel proteins that may require MTP for their synthesis and secretion.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apolipoproteína B-48/metabolismo , Apolipoproteínas B/química , Apolipoproteínas B/genética , Carcinoma Hepatocelular/genética , Proteínas de Transporte , Linhagem Celular , DNA Complementar , Humanos , Lipoproteínas/metabolismo , Neoplasias Hepáticas/genética , RNA Guia de Cinetoplastídeos , RNA Mensageiro , Ribonucleoproteínas , Triglicerídeos/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(27): e2203820119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759660

RESUMO

Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer with limited meaningful treatment options. NEPC lesions uniquely express delta-like ligand 3 (DLL3) on their cell surface. Taking advantage of DLL3 overexpression, we developed and evaluated lutetium-177 (177Lu)-labeled DLL3-targeting antibody SC16 (177Lu-DTPA-SC16) as a treatment for NEPC. SC16 was functionalized with DTPA-CHX-A" chelator and radiolabeled with 177Lu to produce 177Lu-DTPA-SC16. Specificity and selectivity of 177Lu-DTPA-SC16 were evaluated in vitro and in vivo using NCI-H660 (NEPC, DLL3-positive) and DU145 (adenocarcinoma, DLL3-negative) cells and xenografts. Dose-dependent treatment efficacy and specificity of 177Lu-DTPA-SC16 radionuclide therapy were evaluated in H660 and DU145 xenograft-bearing mice. Safety of the agent was assessed by monitoring hematologic parameters. 177Lu-DTPA-SC16 showed high tumor uptake and specificity in H660 xenografts, with minimal uptake in DU145 xenografts. At all three tested doses of 177Lu-DTPA-SC16 (4.63, 9.25, and 27.75 MBq/mouse), complete responses were observed in H660-bearing mice; 9.25 and 27.75 MBq/mouse doses were curative. Even the lowest tested dose proved curative in five (63%) of eight mice, and recurring tumors could be successfully re-treated at the same dose to achieve complete responses. In DU145 xenografts, 177Lu-DTPA-SC16 therapy did not inhibit tumor growth. Platelets and hematocrit transiently dropped, reaching nadir at 2 to 3 wk. This was out of range only in the highest-dose cohort and quickly recovered to normal range by week 4. Weight loss was observed only in the highest-dose cohort. Therefore, our data demonstrate that 177Lu-DTPA-SC16 is a potent and safe radioimmunotherapeutic agent for testing in humans with NEPC.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Neuroendócrino , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Neoplasias da Próstata , Radioimunoterapia , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma Neuroendócrino/radioterapia , Quelantes/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Ligantes , Lutécio , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Ácido Pentético/química , Neoplasias da Próstata/radioterapia , Radioisótopos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Commun ; 13(1): 2144, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440124

RESUMO

Access to clinically relevant small cell lung cancer (SCLC) tissue is limited because surgical resection is rare in metastatic SCLC. Patient-derived xenografts (PDX) and circulating tumor cell-derived xenografts (CDX) have emerged as valuable tools to characterize SCLC. Here, we present a resource of 46 extensively annotated PDX/CDX models derived from 33 patients with SCLC. We perform multi-omic analyses, using targeted tumor next-generation sequencing, RNA-sequencing, and immunohistochemistry to deconvolute the mutational landscapes, global expression profiles, and molecular subtypes of these SCLC models. SCLC subtypes characterized by transcriptional regulators, ASCL1, NEUROD1 and POU2F3 are confirmed in this cohort. A subset of SCLC clinical specimens, including matched PDX/CDX and clinical specimen pairs, confirm that the primary features and genomic and proteomic landscapes of the tumors of origin are preserved in the derivative PDX models. This resource provides a powerful system to study SCLC biology.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteômica , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Transcriptoma/genética
14.
Clin Cancer Res ; 28(7): 1391-1401, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046060

RESUMO

PURPOSE: Small cell lung cancer (SCLC) is an exceptionally lethal form of lung cancer with limited treatment options. Delta-like ligand 3 (DLL3) is an attractive therapeutic target as surface expression is almost exclusive to tumor cells. EXPERIMENTAL DESIGN: We radiolabeled the anti-DLL3 mAb SC16 with the therapeutic radioisotope, Lutetium-177. [177Lu]Lu-DTPA-CHX-A"-SC16 binds to DLL3 on SCLC cells and delivers targeted radiotherapy while minimizing radiation to healthy tissue. RESULTS: [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated high tumor uptake with DLL3-target specificity in tumor xenografts. Dosimetry analyses of biodistribution studies suggested that the blood and liver were most at risk for toxicity from treatment with high doses of [177Lu]Lu-DTPA-CHX-A"-SC16. In the radioresistant NCI-H82 model, survival studies showed that 500 µCi and 750 µCi doses of [177Lu]Lu-DTPA-CHX-A"-SC16 led to prolonged survival over controls, and 3 of the 8 mice that received high doses of [177Lu]Lu-DTPA-CHX-A"-SC16 had pathologically confirmed complete responses (CR). In the patient-derived xenograft model Lu149, all doses of [177Lu]Lu-DTPA-CHX-A"-SC16 markedly prolonged survival. At the 250 µCi and 500 µCi doses, 5 of 10 and 7 of 9 mice demonstrated pathologically confirmed CRs, respectively. Four of 10 mice that received 750 µCi of [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated petechiae severe enough to warrant euthanasia, but the remaining 6 mice demonstrated pathologically confirmed CRs. IHC on residual tissues from partial responses confirmed retained DLL3 expression. Hematologic toxicity was dose-dependent and transient, with full recovery within 4 weeks. Hepatotoxicity was not observed. CONCLUSIONS: Together, the compelling antitumor efficacy, pathologic CRs, and mild and transient toxicity profile demonstrate strong potential for clinical translation of [177Lu]Lu-DTPA-CHX-A"-SC16.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Neoplasias Pulmonares/radioterapia , Proteínas de Membrana/genética , Camundongos , Radioimunoterapia , Carcinoma de Pequenas Células do Pulmão/radioterapia , Distribuição Tecidual
15.
J Nucl Med ; 63(9): 1401-1407, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35058323

RESUMO

Treatment-induced neuroendocrine prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer. Using the 89Zr-labeled delta-like ligand 3 (DLL3) targeting antibody SC16 (89Zr-desferrioxamine [DFO]-SC16), we have developed a PET agent to noninvasively identify the presence of DLL3-positive NEPC lesions. Methods: Quantitative polymerase chain reaction and immunohistochemistry were used to compare relative levels of androgen receptor (AR)-regulated markers and the NEPC marker DLL3 in a panel of prostate cancer cell lines. PET imaging with 89Zr-DFO-SC16, 68Ga-PSMA-11, and 68Ga-DOTATATE was performed on H660 NEPC-xenografted male nude mice. 89Zr-DFO-SC16 uptake was corroborated by biodistribution studies. Results: In vitro studies demonstrated that H660 NEPC cells are positive for DLL3 and negative for AR, prostate-specific antigen, and prostate-specific membrane antigen (PSMA) at both the transcriptional and the translational levels. PET imaging and biodistribution studies confirmed that 89Zr-DFO-SC16 uptake is restricted to H660 xenografts, with background uptake in non-NEPC lesions (both AR-dependent and AR-independent). Conversely, H660 xenografts cannot be detected with imaging agents targeting PSMA (68Ga-PSMA-11) or somatostatin receptor subtype 2 (68Ga-DOTATATE). Conclusion: These studies demonstrated that H660 NEPC cells selectively express DLL3 on their cell surface and can be noninvasively identified with 89Zr-DFO-SC16.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Próstata , Animais , Carcinoma Neuroendócrino/metabolismo , Linhagem Celular Tumoral , Desferroxamina/química , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Masculino , Proteínas de Membrana , Camundongos , Camundongos Nus , Imagem Molecular , Tomografia por Emissão de Pósitrons , Próstata/patologia , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/patologia , Cintilografia , Compostos Radiofarmacêuticos/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Somatostatina/metabolismo , Distribuição Tecidual
16.
Cancer Res ; 82(3): 472-483, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34815254

RESUMO

Small cell lung cancer (SCLC) is an aggressive malignancy characterized by early metastasis and extreme lethality. The backbone of SCLC treatment over the past several decades has been platinum-based doublet chemotherapy, with the recent addition of immunotherapy providing modest benefits in a subset of patients. However, nearly all patients treated with systemic therapy quickly develop resistant disease, and there is an absence of effective therapies for recurrent and progressive disease. Here we conducted CRISPR-Cas9 screens using a druggable genome library in multiple SCLC cell lines representing distinct molecular subtypes. This screen nominated exportin-1, encoded by XPO1, as a therapeutic target. XPO1 was highly and ubiquitously expressed in SCLC relative to other lung cancer histologies and other tumor types. XPO1 knockout enhanced chemosensitivity, and exportin-1 inhibition demonstrated synergy with both first- and second-line chemotherapy. The small molecule exportin-1 inhibitor selinexor in combination with cisplatin or irinotecan dramatically inhibited tumor growth in chemonaïve and chemorelapsed SCLC patient-derived xenografts, respectively. Together these data identify exportin-1 as a promising therapeutic target in SCLC, with the potential to markedly augment the efficacy of cytotoxic agents commonly used in treating this disease. SIGNIFICANCE: CRISPR-Cas9 screening nominates exportin-1 as a therapeutic target in SCLC, and exportin-1 inhibition enhances chemotherapy efficacy in patient-derived xenografts, providing a novel therapeutic opportunity in this disease.


Assuntos
Carioferinas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/metabolismo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Carcinoma de Pequenas Células do Pulmão/patologia , Proteína Exportina 1
17.
Viruses ; 13(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834920

RESUMO

Zika virus (ZIKV) is a re-emerging flavivirus that has caused large-scale epidemics. Infection during pregnancy can lead to neurologic developmental abnormalities in children. There is no approved vaccine or therapy for ZIKV. To uncover cellular pathways required for ZIKV that can be therapeutically targeted, we transcriptionally upregulated all known human coding genes with an engineered CRISPR-Cas9 activation complex in human fibroblasts deficient in interferon (IFN) signaling. We identified Ras homolog family member V (RhoV) and WW domain-containing transcription regulator 1 (WWTR1) as proviral factors, and found them to play important roles during early ZIKV infection in A549 cells. We then focused on RhoV, a Rho GTPase with atypical terminal sequences and membrane association, and validated its proviral effects on ZIKV infection and virion production in SNB-19 cells. We found that RhoV promotes infection of some flaviviruses and acts at the step of viral entry. Furthermore, RhoV proviral effects depend on the complete GTPase cycle. By depleting Rho GTPases and related proteins, we identified RhoB and Pak1 as additional proviral factors. Taken together, these results highlight the positive role of RhoV in ZIKV infection and confirm CRISPR activation as a relevant method to identify novel host-pathogen interactions.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Infecção por Zika virus/enzimologia , Zika virus/fisiologia , Proteína rhoB de Ligação ao GTP/metabolismo , Células A549 , Sistemas CRISPR-Cas , Proteínas de Ligação ao GTP/genética , Humanos , Proteínas de Neoplasias/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Internalização do Vírus , Replicação Viral , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/virologia , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteína rhoB de Ligação ao GTP/genética
18.
Cancer Cell ; 39(11): 1479-1496.e18, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34653364

RESUMO

Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively). To define the heterogeneity of tumors and their associated microenvironments across subtypes, we sequenced 155,098 transcriptomes from 21 human biospecimens, including 54,523 SCLC transcriptomes. We observe greater tumor diversity in SCLC than lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes. We discover a PLCG2-high SCLC phenotype with stem-like, pro-metastatic features that recurs across subtypes and predicts worse overall survival. SCLC exhibits greater immune sequestration and less immune infiltration than lung adenocarcinoma, and SCLC-N shows less immune infiltrate and greater T cell dysfunction than SCLC-A. We identify a profibrotic, immunosuppressive monocyte/macrophage population in SCLC tumors that is particularly associated with the recurrent, PLCG2-high subpopulation.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/genética , Fosfolipase C gama/genética , Carcinoma de Pequenas Células do Pulmão/genética , Plasticidade Celular , Humanos , Metástase Neoplásica , Prognóstico , Análise de Sequência de RNA , Análise de Célula Única , Análise de Sobrevida
19.
Science ; 374(6571): 1099-1106, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34648371

RESUMO

Molecular virology tools are critical for basic studies of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for developing new therapeutics. Experimental systems that do not rely on viruses capable of spread are needed for potential use in lower-containment settings. In this work, we use a yeast-based reverse genetics system to develop spike-deleted SARS-CoV-2 self-replicating RNAs. These noninfectious self-replicating RNAs, or replicons, can be trans-complemented with viral glycoproteins to generate replicon delivery particles for single-cycle delivery into a range of cell types. This SARS-CoV-2 replicon system represents a convenient and versatile platform for antiviral drug screening, neutralization assays, host factor validation, and viral variant characterization.


Assuntos
RNA Viral/genética , Replicon/fisiologia , SARS-CoV-2/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Linhagem Celular , Humanos , Interferons/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Plasmídeos , RNA Viral/metabolismo , Replicon/genética , Genética Reversa , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Saccharomyces cerevisiae/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Pseudotipagem Viral , Vírion/genética , Vírion/fisiologia , Replicação Viral
20.
iScience ; 24(11): 103224, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34712921

RESUMO

Activation of mitogenic signaling pathways is a common oncogenic driver of many solid tumors including lung cancer. Although activating mutations in the mitogen-activated protein kinase (MAPK) pathway are prevalent in non-small cell lung cancers, MAPK pathway activity, counterintuitively, is relatively suppressed in the more aggressively proliferative small cell lung cancer (SCLC). Here, we elucidate the role of the MAPK pathway and how it interacts with other signaling pathways in SCLC. We find that the most common SCLC subtype, SCLC-A associated with high expression of ASCL1, is selectively sensitive to MAPK activation in vitro and in vivo through induction of cell-cycle arrest and senescence. We show strong upregulation of ERK negative feedback regulators and STAT signaling upon MAPK activation in SCLC-A lines. These findings provide insight into the complexity of signaling networks in SCLC and suggest subtype-specific mitogenic vulnerabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...