Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593664

RESUMO

In March 2022, cankers and lesions appeared on the branches of 2-3-year-old pomegranate plants grown in four orchards of Hanumangarh, Rajasthan, India. The disease incidence ranged from 5-15%. Field symptoms such as dark brown lesions on one side of the branches, cracked lesions, vascular tissue discoloration and drooping of the plants were noticed. To identify the causative agent, 2 diseased branch samples, showing typical symptoms collected from each orchard 25-30 km apart. The samples were washed with distilled water and small sections of tissue were excised from both symptomatic and asymptomatic areas using a sterile scalpel. Sections were surface sterilized with 1% sodium hypochlorite for 30 sec and 70% ethanol for 2 min followed by rinsing with sterilized water thrice. Sterile sections were dried on sterile filter paper and then transferred onto potato dextrose agar (PDA) amended with streptomycin (100 mgL-1) and incubated at 24±1°C in the dark. Samples (n=5) collected from different orchards produced similar colonies, with greyish white aerial mycelia, which became dark black after 5-7 days. The morphological characteristics of all isolates were observed under microscope. Immature conidia (6.3±1.05*14.7±0.98 µm: average of 50 measurements) were single celled, hyaline, ellipsoid or ovoid, apex rounded and truncated at the base while the matured conidia (8.4±1.41*15.3±1.17 µm: average of 50 measurements) had two cells with dark septa. The conidial morphology of all isolates was in accordance with Lasiodiplodia sp. (Alves et al; 2008) therefore, one representative isolate (HSC-1) was used for molecular identification at species level. Three loci viz., ITS, EF1-a and ß tubulin of fungal genomic DNA were PCR amplified using ITS-1/4, EF-F/R and TUB-2A/2B primers, respectively. The amplicons were sequenced and deposited in GenBank, NCBI database with accession no. ON598885 (ITS), ON605203 (EF) and ON605204 (TUB). BLASTn analysis showed similarity with the sequences of Lasiodiplodia theobromae isolates: ITS showed 100% with MK530071.1 (492 bases), EF 99.77% with MT975688.1 (436 bases) and BT 99.76% with MW287586.1 (422 bases). Phylogenetic analysis using Neighbour Joining method revealed close association among L. theobromae isolates. Thus, causative agent associated with stem canker of pomegranate was confirmed as L. theobromae. Further, the same isolate was used for pathogenicity tests on 1-year-old pomegranate plants (n=6). Briefly, 2 cm wound was created in the main stem with a sterile scalpel and a same-size mycelial plug was placed in the wound and wrapped with parafilm. Six plants that were wrapped with uncultured PDA served as control. The inoculated plants were maintained at 26°C and 65-70% RH in a polyhouse. After 4 days parafilm was removed from all plants. The experiment was repeated twice. Inoculated plants produced lesions (0.7 x 5.5 cm; average of 6 measurements) similar to field symptoms after 10-15 days and no such symptoms developed on control plants. The difference between control and inoculated plants was statistically significant (p=0.0001). The fungus was re-isolated from symptomatic tissue and colonies were morphologically similar to HSC-1, thus fulfilling the Koch's postulates. The fungus, L. theobromae causes stem canker and dieback on different host plants and is mainly distributed in tropical and subtropical regions and has been reported on pomegranate from Florida (Xavier et al 2017). To the best of our knowledge, this is the first report of L. theobromae causing stem canker of pomegranate in India.

2.
J Fungi (Basel) ; 8(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36294605

RESUMO

Fungal pathogens are a major constraint affecting the quality of pomegranate production around the world. Among them, Alternaria and Colletotrichum species cause leaf spot, fruit spot or heart rot (black rot), and fruit rot (anthracnose) or calyx end rot, respectively. Accurate identification of disease-causing fungal species is essential for developing suitable management practices. Therefore, characterization of Alternaria and Colletotrichum isolates representing different geographical regions, predominantly Maharashtra-the Indian hub of pomegranate production and export-was carried out. Fungal isolates could not be identified based on morphological characteristics alone, hence were subjected to multi-gene phylogeny for their accurate identification. Based on a maximum likelihood phylogenetic tree, Alternaria isolates were identified as within the A. alternata species complex and as A. burnsii, while Colletotrichum isolates showed genetic closeness to various species within the C. gloeosporioides species complex. Thus, the current study reports for the first time that, in India, the fruit rots of pomegranate are caused by multiple species and not a single species of Alternaria and Colletotrichum alone. Since different species have different epidemiology and sensitivity toward the commercially available and routinely applied fungicides, the precise knowledge of the diverse species infecting pomegranate, as provided by the current study, is the first step towards devising better management strategies.

3.
Front Plant Sci ; 13: 943959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110362

RESUMO

Despite the availability of whole genome assemblies, the identification and utilization of gene-based marker systems has been limited in pomegranate. In the present study, we performed a genome-wide survey of intron length (IL) markers in the 36,524 annotated genes of the Tunisia genome. We identified and designed a total of 8,812 potential intron polymorphism (PIP) markers specific to 3,445 (13.40%) gene models that span 8 Tunisia chromosomes. The ePCR validation of all these PIP markers on the Tunisia genome revealed single-locus amplification for 1,233 (14%) markers corresponding to 958 (27.80%) genes. The markers yielding single amplicons were then mapped onto Tunisia chromosomes to develop a saturated linkage map. The functional categorization of 958 genes revealed them to be a part of the nucleus and the cytoplasm having protein binding and catalytic activity, and these genes are mainly involved in the metabolic process, including photosynthesis. Further, through ePCR, 1,233 PIP markers were assayed on multiple genomes, which resulted in the identification of 886 polymorphic markers with an average PIC value of 0.62. In silico comparative mapping based on physically mapped PIP markers indicates a higher synteny of Tunisia with the Dabenzi and Taishanhong genomes (>98%) in comparison with the AG2017 genome (95%). We then performed experimental validation of a subset of 100 PIP primers on eight pomegranate genotypes and identified 76 polymorphic markers, with 15 having PIC values ≥0.50. We demonstrated the potential utility of the developed markers by analyzing the genetic diversity of 31 pomegranate genotypes using 24 PIP markers. This study reports for the first time large-scale development of gene-based and chromosome-specific PIP markers, which would serve as a rich marker resource for genetic variation studies, functional gene discovery, and genomics-assisted breeding of pomegranate.

4.
PLoS One ; 16(8): e0256246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411169

RESUMO

Different factitious hosts were used to mass rear Trichogramma japonicum Ashmead in different parts of the globe because thorough details were lacking in both the laboratory and the field. The objective of this study was to compare, parasitoid, T. japonicum reared in different factitious hosts. Three commonly used factitious host eggs, Corcyra cephalonica (Stainton), Ephestia kuehniella Zeller and Sitotroga cerealella Olivier were tested under laboratory conditions and then in the field over a yellow stem borer, Scirpophaga incertulus (Walker) of rice. The highest parasitism by T. japonicum was observed on E. kuehniella eggs. The parasitoid's highest emergence (88.99%) was observed on S. cerealella eggs at 24 h exposure, whereas at 48 h it was on E. kuehniella eggs (94.66%). Trichogramma japonicum females that emerged from E. kuehniella eggs were significantly long-lived. The days of oviposition by hosts and the host species were significant individually, but not their interaction. Higher proportions of flying T. japonicum were observed when reared on E. kuehniella and C. cephalonica eggs. Field results showed that T. japonicum mass-reared on E. kuehniella showed higher parasitism of its natural host, S. incertulus eggs. Hence, by considering these biological characteristics and field results, E. kuehniella could be leveraged for the mass rearing of quality parasitoids of T. japonicum in India, the Asian continent and beyond.


Assuntos
Interações Hospedeiro-Parasita/genética , Himenópteros/genética , Lepidópteros/parasitologia , Controle Biológico de Vetores , Animais , Ovos/parasitologia , Feminino , Especificidade de Hospedeiro/genética , Himenópteros/patogenicidade , Índia , Larva/patogenicidade , Lepidópteros/genética , Mariposas/parasitologia , Oryza/parasitologia , Oviposição/genética , Vespas/patogenicidade
5.
Ecotoxicol Environ Saf ; 205: 111324, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971453

RESUMO

Chlorantraniliprole (CAP) is extensively used for rice pest management. Lack of information on the role of standing water and amount and timing of rainfall on CAP dissipation in rice ecosystem could hamper its prospective use. Present study was performed to investigate the effects of different water regimes (saturated, 5 and 10 cm standing water) and simulated rainfall (40 and 100 mm occurred at 4, 8 and 24 h after CAP application) on leaching, surface runoff and dissipation of CAP into components of rice ecosystem. The results showed highest concentration of CAP residues in soil and plant under saturated condition followed by 5 and 10 cm standing water conditions. Whereas, the highest concentration of CAP in leachates was detected under 10 cm standing water (12.19 ng mL-1). The results revealed large amount of leaching (21.99 ng mL-1) and surface runoff (42.25 ng mL-1) losses of CAP when 100 mm rainfall occurred at 4 h after pesticide application. The total quantity of CAP residues in soil and plant was highest when rainfall occurred at 24 h after pesticide application under both the rainfall amounts. Water stagnation and high intensity rainfall occurred shortly after pesticide application will contribute to pesticide loss to non-target sites through surface run-off and leaching. There will be less pesticide available in soil for plant uptake which may not be sufficient to kill the target organisms.


Assuntos
Mudança Climática , Ecossistema , Inseticidas/análise , Oryza , Chuva , ortoaminobenzoatos/análise , Praguicidas/análise , Estudos Prospectivos , Solo/química , Poluentes do Solo/análise , Água/química , Poluentes Químicos da Água/análise
6.
J Environ Manage ; 272: 111084, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32854888

RESUMO

Point pollution of pesticides originating from the washing of spraying machines could be controlled by biobed system and it is in use in temperate countries. The biobed system is yet to be established in tropical countries. An indigenous biobed system was prepared using local resources like rice straw, farm yard manures (FYM) and paddy field soil to suit the tropical climate. Lowermost 3 cm layer of the biobed system was filled with rice husk biochar to prevent leaching of pesticides from the system. This model system was tested with high doses of imidacloprid (178 mg/column), a commonly used pesticide against number of insect-pests in different crops, for its degradation. The bio-mix trapped a major part of the imidacloprid on the top most layer of the biobed column and only a very small part of imidacloprid recovered from the leachate. The biobed system could degrade 70.13% of applied imidacloprid within 15 days of the experiment and only 5.27% of the total pesticide recovered 90 days after incubation. Addition of biochar layer adsorbed imidacloprid from the outgoing leachate from the biobed column. Biomixture boosted microbial activity more particularly fungal population, which might be responsible for imidacloprid degradation. Microbial biomass carbon, and soil enzymes indicated faster dissipation of imidacloprid from the top layer of the biobed. This simple but efficient biobed system using local resources can fulfill the need of the small and marginal farmers of Asian countries for pesticide decontamination.


Assuntos
Nitrocompostos , Praguicidas/análise , Ásia , Neonicotinoides , Solo
7.
Plant J ; 103(4): 1263-1274, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32623778

RESUMO

Interactions between plant-parasitic nematodes and their hosts are mediated by effectors, i.e. secreted proteins that manipulate the plant to the benefit of the pathogen. To understand the role of effectors in host adaptation in nematodes, we analysed the transcriptome of Heterodera sacchari, a cyst nematode parasite of rice (Oryza sativa) and sugarcane (Saccharum officinarum). A multi-gene phylogenetic analysis showed that H. sacchari and the cereal cyst nematode Heterodera avenae share a common evolutionary origin and that they evolved to parasitise monocot plants from a common dicot-parasitic ancestor. We compared the effector repertoires of H. sacchari with those of the dicot parasites Heterodera glycines and Globodera rostochiensis to understand the consequences of this transition. While, in general, effector repertoires are similar between the species, comparing effectors and non-effectors of H. sacchari and G. rostochiensis shows that effectors have accumulated more mutations than non-effectors. Although most effectors show conserved spatiotemporal expression profiles and likely function, some H. sacchari effectors are adapted to monocots. This is exemplified by the plant-peptide hormone mimics, the CLAVATA3/EMBRYO SURROUNDING REGION-like (CLE) effectors. Peptide hormones encoded by H. sacchari CLE effectors are more similar to those from rice than those from other plants, or those from other plant-parasitic nematodes. We experimentally validated the functional significance of these observations by demonstrating that CLE peptides encoded by H. sacchari induce a short root phenotype in rice, whereas those from a related dicot parasite do not. These data provide a functional example of effector evolution that co-occurred with the transition from a dicot-parasitic to a monocot-parasitic lifestyle.


Assuntos
Doenças das Plantas/parasitologia , Tylenchoidea/metabolismo , Tylenchoidea/patogenicidade , Animais , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Transcriptoma/genética , Tylenchoidea/genética
8.
J Exp Bot ; 71(14): 4271-4284, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32242224

RESUMO

Ascorbic acid (AA) is the major antioxidant buffer produced in the shoot tissue of plants. Previous studies on root-knot nematode (RKN; Meloidogyne graminicola)-infected rice (Oryza sativa) plants showed differential expression of AA-recycling genes, although their functional role was unknown. Our results confirmed increased dehydroascorbate (DHA) levels in nematode-induced root galls, while AA mutants were significantly more susceptible to nematode infection. External applications of ascorbate oxidase (AO), DHA, or reduced AA, revealed systemic effects of ascorbate oxidation on rice defence versus RKN, associated with a primed accumulation of H2O2 upon nematode infection. To confirm and further investigate these systemic effects, a transcriptome analysis was done on roots of foliar AO-treated plants, revealing activation of the ethylene (ET) response and jasmonic acid (JA) biosynthesis pathways in roots, which was confirmed by hormone measurements. Activation of these pathways by methyl-JA, or ethephon treatment can complement the susceptibility phenotype of the rice Vitamin C (vtc1) mutant. Experiments on the jasmonate signalling (jar1) mutant or using chemical JA/ET inhibitors confirm that the effects of ascorbate oxidation are dependent on both the JA and ET pathways. Collectively, our data reveal a novel pathway in which ascorbate oxidation induces systemic defence against RKNs.


Assuntos
Oryza , Tylenchoidea , Animais , Ácido Ascórbico , Peróxido de Hidrogênio , Doenças das Plantas , Raízes de Plantas
9.
Mol Plant Pathol ; 21(1): 66-82, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756029

RESUMO

Plant-parasitic nematodes secrete effectors that manipulate plant cell morphology and physiology to achieve host invasion and establish permanent feeding sites. Effectors from the highly expanded SPRYSEC (SPRY domain with a signal peptide for secretion) family in potato cyst nematodes have been implicated in activation and suppression of plant immunity, but the mechanisms underlying these activities remain largely unexplored. To study the host mechanisms used by SPRYSEC effectors, we identified plant targets of GpRbp-1 from the potato cyst nematode Globodera pallida. Here, we show that GpRbp-1 interacts in yeast and in planta with a functional potato homologue of the Homology to E6-AP C-Terminus (HECT)-type ubiquitin E3 ligase UPL3, which is located in the nucleus. Potato lines lacking StUPL3 are not available, but the Arabidopsis mutant upl3-5 displaying a reduced UPL3 expression showed a consistently small but not significant decrease in susceptibility to cyst nematodes. We observed a major impact on the root transcriptome by the lower levels of AtUPL3 in the upl3-5 mutant, but surprisingly only in association with infections by cyst nematodes. To our knowledge, this is the first example that a HECT-type ubiquitin E3 ligase is targeted by a pathogen effector and that a member of this class of proteins specifically regulates gene expression under biotic stress conditions. Together, our data suggest that GpRbp-1 targets a specific component of the plant ubiquitination machinery to manipulate the stress response in host cells.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Helminto/metabolismo , Solanum tuberosum/parasitologia , Tylenchoidea/patogenicidade , Ubiquitina-Proteína Ligases/metabolismo , Animais , Arabidopsis/parasitologia , Proteínas de Arabidopsis/metabolismo , Domínio B30.2-SPRY , Ligases/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitinação
10.
Ecotoxicol Environ Saf ; 135: 225-235, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27744192

RESUMO

Application of pesticide in agricultural fields is "unnecessary evil" for non-target microflora and fauna. Hence, to identify the safer pesticide molecules against non-target microbes, a long-term pesticide experiment was initiated at National Rice Research Institute, Cuttack, India. In the present study, the effect of continuous application of chlorpyrifos (0.5kgha-1) in rice fields on non-target groups of soil microbes and nematodes was studied for seven seasons (four wet and three dry seasons) during 2009-2013. Treatments were arranged in a randomized complete block design with four replications of chlorpyrifos-treated (0.5kg a.i. ha-1) (CT) and untreated control (UT) plots. During seven seasons of experimentation, regular application of chlorpyrifos had no significant effect on population of heterotrophic aerobic, anaerobic, oligotrophic and copiotrophic bacteria in CT compared to UT, whereas, population of asymbiotic aerobic nitrogen fixer, nitrifiers, denitrifiers, gram positive and spore-forming bacteria were significantly reduced by nearly 0.25-2 fold in CT than UT. However, comparatively less deviation in population of actinomycetes, fungi, phosphate solubilizing and sulfur oxidizing bacteria were observed in CT than UT. Significant interactions were found between effects of chlorpyrifos with time in population dynamics of microbes. In plant parasitic nematode species, Meloidogyne graminicola (RRKN) and Hirschmanniella spp. (RRN), were significantly lower (p<0.01) in CT compared to UT after first year onwards. The overall observation of five years data indicated that the RRKN population showed a decreasing trend (R2=0.644) whereas RRN showed increasing trend (R2=0.932) in CT. The drastic chlorpyrifos dissipation was noticed after 15 days of application from the initial residue of 0.25mgkg-1 soil, which indicated that chlorpyrifos residue in rice field soil was not persistent and its half-life was found to be 4.02 days. Overall, the present findings revealed that non-target effect of repetitive application of chloropyrifos (0.5kgha-1) on soil microbes and nematodes was found less under rice-rice cropping system.


Assuntos
Bactérias/efeitos dos fármacos , Clorpirifos/toxicidade , Fungos/efeitos dos fármacos , Inseticidas/toxicidade , Microbiologia do Solo , Tylenchoidea/efeitos dos fármacos , Agricultura/métodos , Animais , Meia-Vida , Oryza , Distribuição Aleatória
11.
Environ Monit Assess ; 188(2): 105, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26790432

RESUMO

Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities.


Assuntos
Dióxido de Carbono/análise , Clorpirifos/análise , Inseticidas/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Biomassa , Clorpirifos/metabolismo , Monitoramento Ambiental , Meia-Vida , Inseticidas/metabolismo , Oryza , Poluentes do Solo/metabolismo , Temperatura , Urease/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...