Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosurg Spine ; : 1-11, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36883621

RESUMO

OBJECTIVE: Proximal junctional kyphosis (PJK) is a relatively common complication following long instrumented posterior spinal fusion. Although several risk factors have been identified in the literature, previous biomechanical studies suggest that one of the leading causes is the sudden change in mobility between the instrumented and noninstrumented segments. The current study aims to assess the biomechanical effect of 1 rigid and 2 semirigid fixation techniques (SFTs) on developing PJK. METHODS: Four T7-L5 finite element (FE) models were developed: 1) intact spine; 2) 5.5-mm titanium rod from T8 to L5 (titanium rod fixation [TRF]); 3) multiple rods from T8 to T9 connected with titanium rod from T9 to L5 (multiple-rod fixation [MRF]); and 4) polyetheretherketone rod from T8 to T9 connected with titanium rod from T9 to L5 (PEEK rod fixation [PRF]). A modified multidirectional hybrid test protocol was used. First, a pure bending moment of 5 Nm was applied to measure the intervertebral rotation angles. Second, the TRF technique's displacement from the first loading step was applied to the instrumented FE models to compare the pedicle screw stress values in the upper instrumented vertebra (UIV). RESULTS: In the load-controlled step, at the upper instrumented segment, the intervertebral rotation values relative to TRF increased by 46.8% and 99.2% for flexion, by 43.2% and 87.7% for extension, by 90.1% and 137% for lateral bending, and by 407.1% and 585.2% for axial rotation, in the case of MRF and PRF, respectively. In the displacement-controlled step, maximum pedicle screw stress values at the UIV level were highest in the case of TRF (37.26 MPa, 42.13 MPa, 44.4 MPa, and 44.59 MPa for flexion, extension, lateral bending, and axial rotation, respectively). Compared to TRF, in the case of MRF and PRF, the screw stress values were reduced by 17.3% and 27.7% for flexion, by 26.6% and 36.7% for extension, by 6.8% and 34.3% for lateral bending, and by 49.1% and 59.8% for axial rotation, respectively. CONCLUSIONS: FE analysis has shown that the SFTs increase the mobility at the upper instrumented segment and therefore provide a more gradual transition in motion between the instrumented and rostral noninstrumented segments of the spine. In addition, SFTs decrease the screw loads at the UIV level and hence could help reduce the risk for PJK. However, further investigations are recommended to evaluate the long-term clinical usefulness of these techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...