Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234161

RESUMO

As one of the key safety components in motor vehicles, the steel wheel rim is commonly fabricated with the roll forming process. However, due to the varied cross-sections of the rim and the low formability of high-strength steel, it is difficult to produce thin-wall and defect-free wheel rims to realize the purpose of light weight. To solve these problems, a novel hydroforming process by combining internal and external pressures (HIEP) was proposed to produce thin-wall wheel rims in the current study. The designed initial tube with diameter between the maximum and minimum diameter of the wheel rim ensures dispersed deformation and effectively avoids local excessive thinning. During HIEP, a hydroforming process was performed with two successive stages: the external pressure and internal pressure stages. Theoretical analysis and finite element method (FEM) were jointly used to investigate the effect of process parameters on the wrinkling and thinning. With the optimized parameters for internal and external pressure, the wrinkling of wheel rims is prevented under compressive state during the external pressure forming stage. Additionally, HIEP was experimentally carried out with high-strength steel rims of 650 MPa ultimate tensile strength (UTS). Finally, wheel rims with weight reduction of 13% were produced successfully, which shows a uniform thickness distribution with a local maximum thinning ratio of 11.4%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...