Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Arthroplasty ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38640967

RESUMO

AIM: One of the most severe complications of primary total knee arthroplasty (TKA) is prosthetic joint infection (PJI). Currently, the use of antibiotic-loaded cement for the prevention of infection is still controversial. The aim of the present study was to evaluate if the use of antibiotic-loaded cement reduces the infection rate in primary total knee arthroplasty in long-term follow-up (more than five years average follow up). METHOD: This study is the follow-up extension of a prospective randomized study, with 2,893 cemented TKA performed between 2005 and 2010 at our institution. There were two different cohorts depending on which bone cement was used: without antibiotics (control group) or those loaded with erythromycin and colistin (study group). All patients received the same systemic prophylactic antibiotics. The patients were followed for a minimum of twelve months. The diagnosis of PJI was done according to Zimmerli criteria. RESULTS: In 1,452 patients, the prosthetic components were fixed using bone cement without antibiotics, whereas in 1,441 patients, bone cement was loaded with erythromycin and colistin. Both groups were comparable in terms of all the possible risk factors studied. We found a total of 53 deep infections, with a mean rate of 1.8%. There were no differences between the groups as to whether bone cement with or without antibiotics had been used (P = 0.58). The average duration of follow-up was 8.7 years. In terms of prosthetic revision due to aseptic loosening, there were no differences between groups (P = 0.32), with 33 revision arthroplasties in the control group and 37 in the study group. Moreover, we analyzed the erythromycin resistance rate, with no differences between both groups (P = 0.6). CONCLUSIONS: The use of erythromycin and colistin-loaded bone cement in total knee arthroplasty did not lead to a decrease in the rate of infection in long-term follow-up, a finding that suggests that its use would not be indicated in the general population.

2.
FEBS Lett ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38325881

RESUMO

A hallmark of cancer cells is their remarkable ability to efficiently adapt to favorable and hostile environments. Due to a unique metabolic flexibility, tumor cells can grow even in the absence of extracellular nutrients or in stressful scenarios. To achieve this, cancer cells need large amounts of lipids to build membranes, synthesize lipid-derived molecules, and generate metabolic energy in the absence of other nutrients. Tumor cells potentiate strategies to obtain lipids from other cells, metabolic pathways to synthesize new lipids, and mechanisms for efficient storage, mobilization, and utilization of these lipids. Lipid droplets (LDs) are the organelles that collect and supply lipids in eukaryotes and it is increasingly recognized that the accumulation of LDs is a new hallmark of cancer cells. Furthermore, an active role of LD proteins in processes underlying tumorigenesis has been proposed. Here, by focusing on three major classes of LD-resident proteins (perilipins, lipases, and acyl-CoA synthetases), we provide an overview of the contribution of LDs to cancer progression and discuss the role of LD proteins during the proliferation, invasion, metastasis, apoptosis, and stemness of cancer cells.

3.
Metabolism ; 152: 155765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142958

RESUMO

BACKGROUND AND AIM: The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. APPROACH AND RESULTS: Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP-coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. CONCLUSIONS: This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
4.
J Cell Biol ; 222(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37526691

RESUMO

Caveolin-1 (CAV1) and CAV3 are membrane-sculpting proteins driving the formation of the plasma membrane (PM) caveolae. Within the PM mosaic environment, caveola assembly is unique as it requires progressive oligomerization of newly synthesized caveolins while trafficking through the biosynthetic-secretory pathway. Here, we have investigated these early events by combining structural, biochemical, and microscopy studies. We uncover striking trafficking differences between caveolins, with CAV1 rapidly exported to the Golgi and PM while CAV3 is initially retained in the endoplasmic reticulum and laterally moves into lipid droplets. The levels of caveolins in the endoplasmic reticulum are controlled by proteasomal degradation, and only monomeric/low oligomeric caveolins are exported into the cis-Golgi with higher-order oligomers assembling beyond this compartment. When any of those early proteostatic mechanisms are compromised, chemically or genetically, caveolins tend to accumulate along the secretory pathway forming non-functional aggregates, causing organelle damage and triggering cellular stress. Accordingly, we propose a model in which disrupted proteostasis of newly synthesized caveolins contributes to pathogenesis.


Assuntos
Caveolinas , Proteostase , Caveolinas/metabolismo , Caveolina 1/metabolismo , Proteínas de Membrana/metabolismo , Cavéolas/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo
5.
Immunol Rev ; 317(1): 113-136, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36960679

RESUMO

Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.


Assuntos
Anti-Infecciosos , Gotículas Lipídicas , Humanos , Gotículas Lipídicas/metabolismo , Organelas , Bactérias , Imunidade Inata , Anti-Infecciosos/metabolismo , Metabolismo dos Lipídeos
6.
EMBO Mol Med ; 15(2): e17175, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36541061

RESUMO

Microglial cells of the aged brain manifest signs of dysfunction that could contribute to the worse neurological outcome of stroke in the elderly. Treatment with colony-stimulating factor 1 receptor antagonists enables transient microglia depletion that is followed by microglia repopulation after treatment interruption, causing no known harm to mice. We tested whether this strategy restored microglia function and ameliorated stroke outcome in old mice. Cerebral ischemia/reperfusion induced innate immune responses in microglia highlighted by type I interferon and metabolic changes involving lipid droplet biogenesis. Old microglia accumulated lipids under steady state and displayed exacerbated innate immune responses to stroke. Microglia repopulation in old mice reduced lipid-laden microglia, and the cells exhibited reduced inflammatory responses to ischemia. Moreover, old mice with renewed microglia showed improved motor function 2 weeks after stroke. We conclude that lipid deposits in aged microglia impair the cellular responses to ischemia and worsen functional recovery in old mice.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Camundongos , Animais , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo , Isquemia Encefálica/metabolismo , Isquemia/metabolismo , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
7.
Trop Med Infect Dis ; 7(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36006283

RESUMO

Gemella morbillorum is a facultative anaerobic, catalase-negative and non-spore forming Gram-positive cocci. It can be found as part of the normal oropharyngeal flora, in the gastrointestinal tract and the female genital tract. However, it can be a causal agent of infections such as endocarditis, meningitis or brain abscesses, and very rarely can cause osteoarticular infections. Herein, a case report of an acute hematogenous prosthetic hip infection caused by Gemella morbillorum, successfully treated with a DAIR and beta-lactam antibiotic therapy, is presented. We provide a literature review of the other orthopedic-related infections caused by this microorganism.

8.
Front Cell Dev Biol ; 10: 901321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756995

RESUMO

Lipid droplets (LDs) are spherical, single sheet phospholipid-bound organelles that store neutral lipids in all eukaryotes and some prokaryotes. Initially conceived as relatively inert depots for energy and lipid precursors, these highly dynamic structures play active roles in homeostatic functions beyond metabolism, such as proteostasis and protein turnover, innate immunity and defense. A major share of the knowledge behind this paradigm shift has been enabled by the use of systematic molecular profiling approaches, capable of revealing and describing these non-intuitive systems-level relationships. Here, we discuss these advances and some of the challenges they entail, and highlight standing questions in the field.

9.
Trends Endocrinol Metab ; 33(3): 218-229, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065875

RESUMO

As major eukaryotic lipid storage organelles, lipid droplets (LDs) are metabolic hubs coordinating energy flux and building block distribution. Infectious pathogens often promote accumulation and physically interact with LDs. The most accepted view is that host LDs are hijacked by invaders to draw on nutrients for host colonisation. However, unique traits such as biogenesis plasticity, dynamic proteome, signalling capacity, and ability to interact with other organelles endow LDs with competencies to face complex biological challenges. Here, we focus on published data suggesting that LDs are not usurped organelles but innate immunity first responders. By comparison with analogous mechanisms activated on LDs in nutrient-poor environments, our review supports the hypothesis that host LDs actively participate in immunometabolism, immune signalling, and microbial killing.


Assuntos
Socorristas , Gotículas Lipídicas , Eucariotos , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais
10.
Hepatology ; 75(2): 353-368, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34490644

RESUMO

BACKGROUND AND AIMS: Ductular reaction (DR) expands in chronic liver diseases and correlates with disease severity. Besides its potential role in liver regeneration, DR plays a role in the wound-healing response of the liver, promoting periductular fibrosis and inflammatory cell recruitment. However, there is no information regarding its role in intrahepatic angiogenesis. In the current study we investigated the potential contribution of DR cells to hepatic vascular remodeling during chronic liver disease. APPROACH AND RESULTS: In mouse models of liver injury, DR cells express genes involved in angiogenesis. Among angiogenesis-related genes, the expression of Slit2 and its receptor Roundabout 1 (Robo1) was localized in DR cells and neoangiogenic vessels, respectively. The angiogenic role of the Slit2-Robo1 pathway in chronic liver disease was confirmed in ROBO1/2-/+ mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which displayed reduced intrahepatic neovascular density compared to wild-type mice. However, ROBO1/2 deficiency did not affect angiogenesis in partial hepatectomy. In patients with advanced alcohol-associated disease, angiogenesis was associated with DR, and up-regulation of SLIT2-ROBO1 correlated with DR and disease severity. In vitro, human liver-derived organoids produced SLIT2 and induced tube formation of endothelial cells. CONCLUSIONS: Overall, our data indicate that DR expansion promotes angiogenesis through the Slit2-Robo1 pathway and recognize DR cells as key players in the liver wound-healing response.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Hepatopatias Alcoólicas/fisiopatologia , Fígado/fisiopatologia , Neovascularização Patológica/genética , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Animais , Vasos Sanguíneos/metabolismo , Doença Crônica , Progressão da Doença , Expressão Gênica , Ontologia Genética , Hepatite Alcoólica/patologia , Hepatite Alcoólica/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Camundongos , Neovascularização Patológica/patologia , Neovascularização Fisiológica/genética , Proteínas do Tecido Nervoso/metabolismo , Organoides , Gravidade do Paciente , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética , Células-Tronco , Regulação para Cima , Remodelação Vascular , Cicatrização , Proteínas Roundabout
11.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34165498

RESUMO

In the ongoing conflict between eukaryotic cells and pathogens, lipid droplets (LDs) emerge as a choke point in the battle for nutrients. While many pathogens seek the lipids stored in LDs to fuel an expensive lifestyle, innate immunity rewires lipid metabolism and weaponizes LDs to defend cells and animals. Viruses, bacteria, and parasites directly and remotely manipulate LDs to obtain substrates for metabolic energy, replication compartments, assembly platforms, membrane blocks, and tools for host colonization and/or evasion such as anti-inflammatory mediators, lipoviroparticles, and even exosomes. Host LDs counterattack such advances by synthesizing bioactive lipids and toxic nucleotides, organizing immune signaling platforms, and recruiting a plethora of antimicrobial proteins to provide a front-line defense against the invader. Here, we review the current state of this conflict. We will discuss why, when, and how LDs efficiently coordinate and precisely execute a plethora of immune defenses. In the age of antimicrobial resistance and viral pandemics, understanding innate immune strategies developed by eukaryotic cells to fight and defeat dangerous microorganisms may inform future anti-infective strategies.


Assuntos
Bactérias/metabolismo , Metabolismo Energético , Imunidade Inata , Gotículas Lipídicas/metabolismo , Parasitos/metabolismo , Vírus/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias/imunologia , Bactérias/patogenicidade , Evolução Molecular , Interações Hospedeiro-Patógeno , Humanos , Gotículas Lipídicas/imunologia , Parasitos/imunologia , Parasitos/patogenicidade , Transdução de Sinais , Vírus/imunologia , Vírus/patogenicidade
12.
F1000Res ; 10: 263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35169460

RESUMO

Lipid droplets (LDs) are the major lipid storage organelles of eukaryotic cells and together with mitochondria key regulators of cell bioenergetics. LDs communicate with mitochondria and other organelles forming "metabolic synapse" contacts to ensure that lipid supply occurs where and when necessary. Although transmission electron microscopy analysis allows an accurate and precise analysis of contacts, the characterization of a large number of cells and conditions can become a long-term process. In order to extend contact analysis to hundreds of cells and multiple conditions, we have combined confocal fluorescence microscopy with advanced image analysis methods. In this work, we have developed the ImageJ macro script ContactJ, a novel and straight image analysis method to identify and quantify contacts between LD and mitochondria in fluorescence microscopy images allowing the automatic analysis. This image analysis workflow combines colocalization and skeletonization methods, enabling the quantification of LD-mitochondria contacts together with a complete characterization of organelles and cellular parameters. The correlation and normalization of these parameters contribute to the complex description of cell behavior under different experimental energetic states. ContactJ is available here: https://github.com/UB-BioMedMicroscopy/ContactJ/tree/1.0.


Assuntos
Gotículas Lipídicas , Mitocôndrias , Gotículas Lipídicas/metabolismo , Lipídeos , Microscopia Confocal/métodos , Microscopia de Fluorescência
13.
Am J Pathol ; 191(3): 475-486, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345999

RESUMO

Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by cholesterol accumulation caused by loss-of-function mutations in the Npc1 gene. NPC disease primarily affects the brain, causing neuronal damage and affecting motor coordination. In addition, considerable liver malfunction in NPC disease is common. Recently, we found that the depletion of annexin A6 (ANXA6), which is most abundant in the liver and involved in cholesterol transport, ameliorated cholesterol accumulation in Npc1 mutant cells. To evaluate the potential contribution of ANXA6 in the progression of NPC disease, double-knockout mice (Npc1-/-/Anxa6-/-) were generated and examined for lifespan, neurologic and hepatic functions, as well as liver histology and ultrastructure. Interestingly, lack of ANXA6 in NPC1-deficient animals did not prevent the cerebellar degeneration phenotype, but further deteriorated their compromised hepatic functions and reduced their lifespan. Moreover, livers of Npc1-/-/Anxa6-/- mice contained a significantly elevated number of foam cells congesting the sinusoidal space, a feature commonly associated with inflammation. We hypothesize that ANXA6 deficiency in Npc1-/- mice not only does not reverse neurologic and motor dysfunction, but further worsens overall liver function, exacerbating hepatic failure in NPC disease.


Assuntos
Anexina A6/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Hepatopatias/patologia , Longevidade , Animais , Comportamento Animal , Hepatopatias/etiologia , Hepatopatias/metabolismo , Camundongos , Camundongos Knockout , Proteína C1 de Niemann-Pick
14.
Science ; 370(6514)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33060333

RESUMO

Lipid droplets (LDs) are the major lipid storage organelles of eukaryotic cells and a source of nutrients for intracellular pathogens. We demonstrate that mammalian LDs are endowed with a protein-mediated antimicrobial capacity, which is up-regulated by danger signals. In response to lipopolysaccharide (LPS), multiple host defense proteins, including interferon-inducible guanosine triphosphatases and the antimicrobial cathelicidin, assemble into complex clusters on LDs. LPS additionally promotes the physical and functional uncoupling of LDs from mitochondria, reducing fatty acid metabolism while increasing LD-bacterial contacts. Thus, LDs actively participate in mammalian innate immunity at two levels: They are both cell-autonomous organelles that organize and use immune proteins to kill intracellular pathogens as well as central players in the local and systemic metabolic adaptation to infection.


Assuntos
Bactérias/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Gotículas Lipídicas/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Ácidos Graxos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/imunologia , Catelicidinas
15.
Nat Commun ; 11(1): 3888, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753666

RESUMO

First proposed as antimicrobial agents, histones were later recognized for their role in condensing chromosomes. Histone antimicrobial activity has been reported in innate immune responses. However, how histones kill bacteria has remained elusive. The co-localization of histones with antimicrobial peptides (AMPs) in immune cells suggests that histones may be part of a larger antimicrobial mechanism in vivo. Here we report that histone H2A enters E. coli and S. aureus through membrane pores formed by the AMPs LL-37 and magainin-2. H2A enhances AMP-induced pores, depolarizes the bacterial membrane potential, and impairs membrane recovery. Inside the cytoplasm, H2A reorganizes bacterial chromosomal DNA and inhibits global transcription. Whereas bacteria recover from the pore-forming effects of LL-37, the concomitant effects of H2A and LL-37 are irrecoverable. Their combination constitutes a positive feedback loop that exponentially amplifies their antimicrobial activities, causing antimicrobial synergy. More generally, treatment with H2A and the pore-forming antibiotic polymyxin B completely eradicates bacterial growth.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Estruturas Cromossômicas/efeitos dos fármacos , Histonas/metabolismo , Prótons , Animais , Estruturas Cromossômicas/metabolismo , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Imunidade Inata , Mamíferos , Polimixina B/farmacologia , Análise de Sequência de RNA , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
17.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393675

RESUMO

Caveolae are invaginations of the plasma membrane that are remarkably abundant in adipocytes, endothelial cells and muscle. Caveolae provide cells with resources for mechanoprotection, can undergo fission from the plasma membrane and can regulate a variety of signaling pathways. Caveolins are fundamental components of caveolae, but many cells, such as hepatocytes and many neurons, express caveolins without forming distinguishable caveolae. Thus, the function of caveolins goes beyond their roles as caveolar components. The membrane-organizing and -sculpting capacities of caveolins, in combination with their complex intracellular trafficking, might contribute to these additional roles. Furthermore, non-caveolar caveolins can potentially interact with proteins normally excluded from caveolae. Here, we revisit the non-canonical roles of caveolins in a variety of cellular contexts including liver, brain, lymphocytes, cilia and cancer cells, as well as consider insights from invertebrate systems. Non-caveolar caveolins can determine the intracellular fluxes of active lipids, including cholesterol and sphingolipids. Accordingly, caveolins directly or remotely control a plethora of lipid-dependent processes such as the endocytosis of specific cargoes, sorting and transport in endocytic compartments, or different signaling pathways. Indeed, loss-of-function of non-caveolar caveolins might contribute to the common phenotypes and pathologies of caveolin-deficient cells and animals.


Assuntos
Cavéolas , Cavernas , Animais , Caveolina 1 , Membrana Celular , Células Endoteliais
18.
Hepatology ; 72(6): 2149-2164, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32170749

RESUMO

BACKGROUND AND AIMS: Liver regeneration requires the organized and sequential activation of events that lead to restoration of hepatic mass. During this process, other vital liver functions need to be preserved, such as maintenance of blood glucose homeostasis, balancing the degradation of hepatic glycogen stores, and gluconeogenesis (GNG). Under metabolic stress, alanine is the main hepatic gluconeogenic substrate, and its availability is the rate-limiting step in this pathway. Na+ -coupled neutral amino acid transporters (SNATs) 2 and 4 are believed to facilitate hepatic alanine uptake. In previous studies, we demonstrated that a member of the Ca2+ -dependent phospholipid binding annexins, Annexin A6 (AnxA6), regulates membrane trafficking along endo- and exocytic pathways. Yet, although AnxA6 is abundantly expressed in the liver, its function in hepatic physiology remains unknown. In this study, we investigated the potential contribution of AnxA6 in liver regeneration. APPROACH AND RESULTS: Utilizing AnxA6 knockout mice (AnxA6-/- ), we challenged liver function after partial hepatectomy (PHx), inducing acute proliferative and metabolic stress. Biochemical and immunofluorescent approaches were used to dissect AnxA6-/- mice liver proliferation and energetic metabolism. Most strikingly, AnxA6-/- mice exhibited low survival after PHx. This was associated with an irreversible and progressive drop of blood glucose levels. Whereas exogenous glucose administration or restoration of hepatic AnxA6 expression rescued AnxA6-/- mice survival after PHx, the sustained hypoglycemia in partially hepatectomized AnxA6-/- mice was the consequence of an impaired alanine-dependent GNG in AnxA6-/- hepatocytes. Mechanistically, cytoplasmic SNAT4 failed to recycle to the sinusoidal plasma membrane of AnxA6-/- hepatocytes 48 hours after PHx, impairing alanine uptake and, consequently, glucose production. CONCLUSIONS: We conclude that the lack of AnxA6 compromises alanine-dependent GNG and liver regeneration in mice.


Assuntos
Anexina A6/metabolismo , Gluconeogênese/fisiologia , Regeneração Hepática/fisiologia , Animais , Anexina A6/genética , Membrana Celular/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Glicólise/fisiologia , Hepatectomia , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Fígado/cirurgia , Masculino , Camundongos , Camundongos Knockout
19.
Semin Cell Dev Biol ; 108: 33-46, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32146030

RESUMO

The capacity of cells and animals to sense and adapt to fluctuations in the availability of energetic substrates is commonly described as metabolic flexibility. This flexibility allows for example the transition from fed to fasting states and to meet the energy demands of exercise in both states. Flexibility is disrupted in pathological conditions such as the metabolic syndrome but in contrast, it is enhanced in some tumours. Lipid droplets (LDs) and mitochondria are key organelles in bioenergetics. In all eukaryotic cells, LDs store and supply essential lipids to produce signalling molecules, membrane building blocks, and the metabolic energy needed to survive during nutrient poor periods. Highly conserved, robust, and regulated mechanisms ensure these bioenergetic fluxes. Although mitochondria are recognized as the epicentre of metabolic flexibility, the contribution of LDs and LD-proteins is often neglected or considered detrimental. Here, we revisit the key roles of LDs during fasting and the intimate collaboration existing with mitochondria when cells sense and respond to fluctuations in substrate availability.


Assuntos
Metabolismo Energético , Gotículas Lipídicas/metabolismo , Animais , Autofagia , Jejum , Humanos , Gotículas Lipídicas/ultraestrutura , Mitocôndrias/metabolismo , Transdução de Sinais
20.
Cell Mol Life Sci ; 77(14): 2839-2857, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31664461

RESUMO

Cholesterol accumulation in late endosomes is a prevailing phenotype of Niemann-Pick type C1 (NPC1) mutant cells. Likewise, annexin A6 (AnxA6) overexpression induces a phenotype reminiscent of NPC1 mutant cells. Here, we demonstrate that this cellular cholesterol imbalance is due to AnxA6 promoting Rab7 inactivation via TBC1D15, a Rab7-GAP. In NPC1 mutant cells, AnxA6 depletion and eventual Rab7 activation was associated with peripheral distribution and increased mobility of late endosomes. This was accompanied by an enhanced lipid accumulation in lipid droplets in an acyl-CoA:cholesterol acyltransferase (ACAT)-dependent manner. Moreover, in AnxA6-deficient NPC1 mutant cells, Rab7-mediated rescue of late endosome-cholesterol export required the StAR-related lipid transfer domain-3 (StARD3) protein. Electron microscopy revealed a significant increase of membrane contact sites (MCS) between late endosomes and ER in NPC1 mutant cells lacking AnxA6, suggesting late endosome-cholesterol transfer to the ER via Rab7 and StARD3-dependent MCS formation. This study identifies AnxA6 as a novel gatekeeper that controls cellular distribution of late endosome-cholesterol via regulation of a Rab7-GAP and MCS formation.


Assuntos
Anexina A6/genética , Colesterol/genética , Proteínas Ativadoras de GTPase/genética , Doença de Niemann-Pick Tipo C/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Células CHO , Proteínas de Transporte/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Colesterol/metabolismo , Cricetulus , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Endossomos/genética , Endossomos/metabolismo , Humanos , Proteínas de Membrana/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Domínios Proteicos/genética , Transporte Proteico/genética , RNA Interferente Pequeno/genética , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...