Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Hum Behav ; 8(4): 743-757, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366104

RESUMO

Non-spatial attention is a fundamental cognitive mechanism that allows organisms to orient the focus of conscious awareness towards sensory information that is relevant to a behavioural goal while shifting it away from irrelevant stimuli. It has been suggested that attention is regulated by the ongoing phase of slow excitability fluctuations of neural activity in the prefrontal cortex, a hypothesis that has been challenged with no consensus. Here we developed a behavioural and non-invasive stimulation paradigm aiming at modulating slow excitability fluctuations of the inferior frontal junction. Using this approach, we show that non-spatial attention can be selectively modulated as a function of the ongoing phase of exogenously modulated excitability states of this brain structure. These results demonstrate that non-spatial attention relies on ongoing prefrontal excitability states, which are probably regulated by slow oscillatory dynamics, that orchestrate goal-oriented behaviour.


Assuntos
Atenção , Córtex Pré-Frontal , Humanos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Atenção/fisiologia , Masculino , Adulto , Adulto Jovem , Feminino , Estimulação Magnética Transcraniana
2.
Trends Cogn Sci ; 28(3): 264-277, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38341322

RESUMO

Is the role of our sensory systems to represent the physical world as accurately as possible? If so, are our preferences and emotions, often deemed irrational, decoupled from these 'ground-truth' sensory experiences? We show why the answer to both questions is 'no'. Brain function is metabolically costly, and the brain loses some fraction of the information that it encodes and transmits. Therefore, if brains maximize objective functions that increase the fitness of their species, they should adapt to the objective-maximizing rules of the environment at the earliest stages of sensory processing. Consequently, observed 'irrationalities', preferences, and emotions stem from the necessity for our early sensory systems to adapt and process information while considering the metabolic costs and internal states of the organism.


Assuntos
Encéfalo , Emoções , Humanos , Sensação
3.
PLoS Biol ; 22(1): e3002452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198502

RESUMO

Humans often face the challenge of making decisions between ambiguous options. The level of ambiguity in decision-making has been linked to activity in the parietal cortex, but its exact computational role remains elusive. To test the hypothesis that the parietal cortex plays a causal role in computing ambiguous probabilities, we conducted consecutive fMRI and TMS-EEG studies. We found that participants assigned unknown probabilities to objective probabilities, elevating the uncertainty of their decisions. Parietal cortex activity correlated with the objective degree of ambiguity and with a process that underestimates the uncertainty during decision-making. Conversely, the midcingulate cortex (MCC) encodes prediction errors and increases its connectivity with the parietal cortex during outcome processing. Disruption of the parietal activity increased the uncertainty evaluation of the options, decreasing cingulate cortex oscillations during outcome evaluation and lateral frontal oscillations related to value ambiguous probability. These results provide evidence for a causal role of the parietal cortex in computing uncertainty during ambiguous decisions made by humans.


Assuntos
Mapeamento Encefálico , Tomada de Decisões , Humanos , Mapeamento Encefálico/métodos , Assunção de Riscos , Incerteza , Lobo Parietal , Imageamento por Ressonância Magnética/métodos
4.
Cereb Cortex ; 33(24): 11447-11455, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-37750349

RESUMO

The sense of agency is a fundamental aspect of human self-consciousness, whose neural correlates encompass widespread brain networks. Research has explored the neuromodulatory properties of the sense of agency with noninvasive brain stimulation, which induces exogenous manipulations of brain activity; however, it is unknown whether endogenous modulation of the sense of agency is also achievable. We investigated whether the sense of agency can be self-regulated with electroencephalography-based neurofeedback. We conducted 2 experiments in which healthy humans performed a motor task while their motor control was artificially disrupted, and gave agency statements on their perceived control. We first identified the electrophysiological response to agency processing, and then applied neurofeedback in a parallel, sham-controlled design, where participants learnt to self-modulate their sense of agency. We found that behavioral measures of agency and performance on the task decreased with the increasing disruption of control. This was negatively correlated with power spectral density in the theta band, and positively correlated in the alpha and beta bands, at central and parietal electrodes. After neurofeedback training of central theta rhythms, participants improved their actual control over the task, and this was associated with a significant decrease in the frequency band trained via neurofeedback. Thus, self-regulation of theta rhythms can improve sensory-guided behavior.


Assuntos
Neurorretroalimentação , Humanos , Neurorretroalimentação/fisiologia , Controle Comportamental , Eletroencefalografia/métodos , Ritmo Teta/fisiologia , Encéfalo
5.
Nat Hum Behav ; 7(9): 1551-1567, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37460762

RESUMO

Humans are generally risk averse, preferring smaller certain over larger uncertain outcomes. Economic theories usually explain this by assuming concave utility functions. Here, we provide evidence that risk aversion can also arise from relative underestimation of larger monetary payoffs, a perceptual bias rooted in the noisy logarithmic coding of numerical magnitudes. We confirmed this with psychophysics and functional magnetic resonance imaging, by measuring behavioural and neural acuity of magnitude representations during a magnitude perception task and relating these measures to risk attitudes during separate risky financial decisions. Computational modelling indicated that participants use similar mental magnitude representations in both tasks, with correlated precision across perceptual and risky choices. Participants with more precise magnitude representations in parietal cortex showed less variable behaviour and less risk aversion. Our results highlight that at least some individual characteristics of economic behaviour can reflect capacity limitations in perceptual processing rather than processes that assign subjective values to monetary outcomes.


Assuntos
Comportamento de Escolha , Imageamento por Ressonância Magnética , Humanos , Lobo Parietal , Atitude
6.
eNeuro ; 10(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37263793

RESUMO

Transcranial random noise stimulation (tRNS) has been shown to significantly improve visual perception. Previous studies demonstrated that tRNS delivered over cortical areas acutely enhances visual contrast detection of weak stimuli. However, it is currently unknown whether tRNS-induced signal enhancement could be achieved within different neural substrates along the retino-cortical pathway. In three experimental sessions, we tested whether tRNS applied to the primary visual cortex (V1) and/or to the retina improves visual contrast detection. We first measured visual contrast detection threshold (VCT; N = 24, 16 females) during tRNS delivery separately over V1 and over the retina, determined the optimal tRNS intensities for each individual (ind-tRNS), and retested the effects of ind-tRNS within the sessions. We further investigated whether we could reproduce the ind-tRNS-induced modulation on a different session (N = 19, 14 females). Finally, we tested whether the simultaneous application of ind-tRNS to the retina and V1 causes additive effects. Moreover, we present detailed simulations of the induced electric field across the visual system. We found that at the group level tRNS decreases VCT compared with baseline when delivered to the V1. Beneficial effects of ind-tRNS could be replicated when retested within the same experimental session but not when retested in a separate session. Applying tRNS to the retina did not cause a systematic reduction of VCT, regardless of whether the individually optimized intensity was considered or not. We also did not observe consistent additive effects of V1 and retina stimulation. Our findings demonstrate significant tRNS-induced modulation of visual contrast processing in V1 but not in the retina.


Assuntos
Sensibilidades de Contraste , Estimulação Transcraniana por Corrente Contínua , Feminino , Humanos , Percepção Visual/fisiologia
7.
Brain ; 146(11): 4717-4735, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37343140

RESUMO

Owing to its unique connectivity profile with cortical brain regions, and its suggested role in the subcortical propagation of seizures, the anterior nucleus of the thalamus (ANT) has been proposed as a key deep brain stimulation (DBS) target in drug-resistant epilepsy. However, the spatio-temporal interaction dynamics of this brain structure, and the functional mechanisms underlying ANT DBS in epilepsy remain unknown. Here, we study how the ANT interacts with the neocortex in vivo in humans and provide a detailed neurofunctional characterization of mechanisms underlying the effectiveness of ANT DBS, aiming at defining intraoperative neural biomarkers of responsiveness to therapy, assessed at 6 months post-implantation as the reduction in seizure frequency. A cohort of 15 patients with drug-resistant epilepsy (n = 6 males, age = 41.6 ± 13.79 years) underwent bilateral ANT DBS implantation. Using intraoperative cortical and ANT simultaneous electrophysiological recordings, we found that the ANT is characterized by high amplitude θ (4-8 Hz) oscillations, mostly in its superior part. The strongest functional connectivity between the ANT and the scalp EEG was also found in the θ band in ipsilateral centro-frontal regions. Upon intraoperative stimulation in the ANT, we found a decrease in higher EEG frequencies (20-70 Hz) and a generalized increase in scalp-to-scalp connectivity. Crucially, we observed that responders to ANT DBS treatment were characterized by higher EEG θ oscillations, higher θ power in the ANT, and stronger ANT-to-scalp θ connectivity, highlighting the crucial role of θ oscillations in the dynamical network characterization of these structures. Our study provides a comprehensive characterization of the interaction dynamic between the ANT and the cortex, delivering crucial information to optimize and predict clinical DBS response in patients with drug-resistant epilepsy.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Epilepsia/terapia , Epilepsia Resistente a Medicamentos/terapia , Convulsões/terapia , Tálamo/fisiologia
8.
Nat Hum Behav ; 7(7): 1135-1151, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37106080

RESUMO

Sensory information encoded by humans and other organisms is generally presumed to be as accurate as their biological limitations allow. However, perhaps counterintuitively, accurate sensory representations may not necessarily maximize the organism's chances of survival. To test this hypothesis, we developed a unified normative framework for fitness-maximizing encoding by combining theoretical insights from neuroscience, computer science, and economics. Behavioural experiments in humans revealed that sensory encoding strategies are flexibly adapted to promote fitness maximization, a result confirmed by deep neural networks with information capacity constraints trained to solve the same task as humans. Moreover, human functional MRI data revealed that novel behavioural goals that rely on object perception induce efficient stimulus representations in early sensory structures. These results suggest that fitness-maximizing rules imposed by the environment are applied at early stages of sensory processing in humans and machines.


Assuntos
Redes Neurais de Computação , Sensação , Humanos , Percepção
9.
Sci Adv ; 8(9): eabj8935, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245128

RESUMO

Behavior exhibited by humans and other organisms is generally inconsistent and biased and, thus, is often labeled irrational. However, the origins of this seemingly suboptimal behavior remain elusive. We developed a behavioral task and normative framework to reveal how organisms should allocate their limited processing resources such that sensory precision and its related metabolic investment are balanced to guarantee maximal utility. We found that mice act as rational inattentive agents by adaptively allocating their sensory resources in a way that maximizes reward consumption in previously unexperienced stimulus-reward association environments. Unexpectedly, perception of commonly occurring stimuli was relatively imprecise; however, this apparent statistical fallacy implies "awareness" and efficient adaptation to their neurocognitive limitations. Arousal systems carry reward distribution information of sensory signals, and distributional reinforcement learning mechanisms regulate sensory precision via top-down normalization. These findings reveal how organisms efficiently perceive and adapt to previously unexperienced environmental contexts within the constraints imposed by neurobiology.

10.
Nat Commun ; 12(1): 7337, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921144

RESUMO

Confidence, the subjective estimate of decision quality, is a cognitive process necessary for learning from mistakes and guiding future actions. The origins of confidence judgments resulting from economic decisions remain unclear. We devise a task and computational framework that allowed us to formally tease apart the impact of various sources of confidence in value-based decisions, such as uncertainty emerging from encoding and decoding operations, as well as the interplay between gaze-shift dynamics and attentional effort. In line with canonical decision theories, trial-to-trial fluctuations in the precision of value encoding impact economic choice consistency. However, this uncertainty has no influence on confidence reports. Instead, confidence is associated with endogenous attentional effort towards choice alternatives and down-stream noise in the comparison process. These findings provide an explanation for confidence (miss)attributions in value-guided behaviour, suggesting mechanistic influences of endogenous attentional states for guiding decisions and metacognitive awareness of choice certainty.

11.
Elife ; 102021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779767

RESUMO

Recent studies have suggested close functional links between overt visual attention and decision making. This suggests that the corresponding mechanisms may interface in brain regions known to be crucial for guiding visual attention - such as the frontal eye field (FEF). Here, we combined brain stimulation, eye tracking, and computational approaches to explore this possibility. We show that inhibitory transcranial magnetic stimulation (TMS) over the right FEF has a causal impact on decision making, reducing the effect of gaze dwell time on choice while also increasing reaction times. We computationally characterize this putative mechanism by using the attentional drift diffusion model (aDDM), which reveals that FEF inhibition reduces the relative discounting of the non-fixated option in the comparison process. Our findings establish an important causal role of the right FEF in choice, elucidate the underlying mechanism, and provide support for one of the key causal hypotheses associated with the aDDM.


Assuntos
Tomada de Decisões/fisiologia , Lobo Frontal/fisiologia , Estimulação Magnética Transcraniana , Adulto , Atenção/fisiologia , Tecnologia de Rastreamento Ocular , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-34508645

RESUMO

Moral preferences pervade many aspects of our lives, dictating how we ought to behave, whom we can marry, and even what we eat. Despite their relevance, one fundamental question remains unanswered: Where do individual moral preferences come from? It is often thought that all types of preferences reflect properties of domain-general neural decision mechanisms that employ a common "neural currency" to value choice options in many different contexts. This view, however, appears at odds with the observation that many humans consider it intuitively wrong to employ the same scale to compare moral value (e.g., of a human life) with material value (e.g., of money). In this paper, we directly test if moral subjective values are represented by similar neural processes as financial subjective values. In a study combining fMRI with a novel behavioral paradigm, we identify neural representations of the subjective values of human lives or financial payoffs by means of structurally identical computational models. Correlating isomorphic model variables from both domains with brain activity reveals specific patterns of neural activity that selectively represent values in the moral (rTPJ) or financial (vmPFC) domain. Intriguingly, our findings show that human lives and money are valued in (at least partially) distinct neural currencies, supporting theoretical proposals that human moral behavior is guided by processes that are distinct from those underlying behavior driven by personal material benefit.

13.
Nat Commun ; 12(1): 2243, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854049

RESUMO

Diverse transcranial electrical stimulation (tES) techniques have recently been developed to elucidate the role of neural oscillations, but critically, it remains questionable whether neural entrainment genuinely occurs and is causally related to the resulting behavior. Here, we provide a perspective on an emerging integrative research program across systems, species, theoretical and experimental frameworks to elucidate the potential of tES to induce neural entrainment. We argue that such an integrative agenda is a requirement to establish tES as a tool to test the causal role of neural oscillations and highlight critical issues that should be considered when adopting a translational approach.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Sistema Nervoso/química , Estimulação Transcraniana por Corrente Contínua , Animais , Relógios Biológicos , Humanos , Estimulação Transcraniana por Corrente Contínua/instrumentação , Estimulação Transcraniana por Corrente Contínua/métodos
14.
Brain Stimul ; 13(6): 1796-1799, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33045404

RESUMO

Transcranial alternating current stimulation (tACS) was introduced about a decade ago as a non-invasive brain stimulation method to modulate neural oscillations in a relatively safe manner in humans. However, the possibility to induce genuine neural entrainment with low current intensities has been questioned. In a recent study, Johnson and colleagues provide direct evidence for the efficacy of low-intensity tACS to induce neural entrainment in awake monkeys. These findings have important translational implications for human non-invasive neuromodulation research.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Animais , Encéfalo , Primatas , Vigília
15.
Elife ; 92020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930663

RESUMO

Human decisions are based on finite information, which makes them inherently imprecise. But what determines the degree of such imprecision? Here, we develop an efficient coding framework for higher-level cognitive processes in which information is represented by a finite number of discrete samples. We characterize the sampling process that maximizes perceptual accuracy or fitness under the often-adopted assumption that full adaptation to an environmental distribution is possible, and show how the optimal process differs when detailed information about the current contextual distribution is costly. We tested this theory on a numerosity discrimination task, and found that humans efficiently adapt to contextual distributions, but in the way predicted by the model in which people must economize on environmental information. Thus, understanding decision behavior requires that we account for biological restrictions on information coding, challenging the often-adopted assumption of precise prior knowledge in higher-level decision systems.


Assuntos
Tomada de Decisões/fisiologia , Modelos Psicológicos , Adulto , Algoritmos , Comportamento de Escolha , Feminino , Humanos , Masculino , Análise e Desempenho de Tarefas , Adulto Jovem
16.
Nat Hum Behav ; 4(9): 949-963, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32483344

RESUMO

Theories and computational models of decision-making usually focus on how strongly different attributes are weighted in choice, for example, as a function of their importance or salience to the decision-maker. However, when different attributes affect the decision process is a question that has received far less attention. Here, we investigated whether the timing of attribute consideration has a unique influence on decision-making by using a time-varying drift diffusion model and data from four separate experiments. Experimental manipulations of attention and neural activity demonstrated that we can dissociate the processes that determine the relative weighting strength and timing of attribute consideration. Thus, the processes determining either the weighting strengths or the timing of attributes in decision-making can independently adapt to changes in the environment or goals. Quantifying these separate influences of timing and weighting on choice improves our understanding and predictions of individual differences in decision behaviour.


Assuntos
Atenção/fisiologia , Tomada de Decisões/fisiologia , Recompensa , Adulto , Feminino , Humanos , Masculino , Modelos Psicológicos , Tempo de Reação/fisiologia , Fatores de Tempo , Adulto Jovem
17.
Sci Rep ; 10(1): 7317, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355294

RESUMO

Several theories propose that perceptual decision making depends on the gradual accumulation of information that provides evidence in favour of one of the choice-options. The outcome of this temporally extended integration process is thought to be categorized into the 'winning' and 'losing' choice-options for action. Neural correlates of corresponding decision formation processes have been observed in various frontal and parietal brain areas, among them the frontal eye-fields (FEF). However, the specific functional role of the FEFs is debated. Recent studies in humans and rodents provide conflicting accounts, proposing that the FEF either accumulate the choice-relevant information or categorize the outcome of such evidence integration into discrete actions. Here, we used transcranial magnetic stimulation (TMS) on humans to interfere with either left or right FEF activity during different timepoints of perceptual decision-formation. Stimulation of either FEF affected performance only when delivered during information integration but not during subsequent categorical choice. However, the patterns of behavioural changes suggest that the left-FEF contributes to general evidence integration, whereas right-FEF may direct spatial attention to the contralateral hemifield. Taken together, our results indicate an FEF involvement in evidence accumulation but not categorization, and suggest hemispheric lateralization for this function in the human brain.


Assuntos
Atenção/fisiologia , Lobo Frontal/fisiologia , Tempo de Reação , Estimulação Magnética Transcraniana , Córtex Visual/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Tomada de Decisões , Eletrodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Campos Visuais , Percepção Visual/fisiologia , Adulto Jovem
18.
Trends Cogn Sci ; 23(11): 906-908, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31629634

RESUMO

Weber's law appears to be a universal principle describing how we discriminate between physical magnitudes. However, this law remained purely descriptive for nearly two centuries. A study by Pardo-Vazquez et al. finally provides a mechanistic explanation, revealing how both accuracy and reaction-time performance lawfully emerge during sensory discrimination tasks.


Assuntos
Cognição , Percepção Visual , Humanos , Tempo de Reação
19.
Nat Neurosci ; 22(1): 134-142, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559477

RESUMO

Preference-based decisions are essential for survival, for instance, when deciding what we should (not) eat. Despite their importance, preference-based decisions are surprisingly variable and can appear irrational in ways that have defied mechanistic explanations. Here we propose that subjective valuation results from an inference process that accounts for the structure of values in the environment and that maximizes information in value representations in line with demands imposed by limited coding resources. A model of this inference process explains the variability in both subjective value reports and preference-based choices, and predicts a new preference illusion that we validate with empirical data. Interestingly, the same model explains the level of confidence associated with these reports. Our results imply that preference-based decisions reflect information-maximizing transmission and statistically optimal decoding of subjective values by a limited-capacity system. These findings provide a unified account of how humans perceive and valuate the environment to optimally guide behavior.


Assuntos
Tomada de Decisões/fisiologia , Alimentos , Modelos Neurológicos , Adulto , Comportamento de Escolha/fisiologia , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Adulto Jovem
20.
Science ; 361(6401)2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30072510

RESUMO

Leaders must take responsibility for others and thus affect the well-being of individuals, organizations, and nations. We identify the effects of responsibility on leaders' choices at the behavioral and neurobiological levels and document the widespread existence of responsibility aversion, that is, a reduced willingness to make decisions if the welfare of others is at stake. In mechanistic terms, basic preferences toward risk, loss, and ambiguity do not explain responsibility aversion, which, instead, is driven by a second-order cognitive process reflecting an increased demand for certainty about the best choice when others' welfare is affected. Finally, models estimating levels of information flow between brain regions that process separate choice components provide the first step in understanding the neurobiological basis of individual variability in responsibility aversion and leadership scores.


Assuntos
Encéfalo/fisiologia , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Liderança , Rede Nervosa/fisiologia , Responsabilidade Social , Adulto , Simulação por Computador , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Psicológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...