Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 56(2): 681-693, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27377812

RESUMO

In previous works, we have shown that insulin-like growth factor-binding protein-3 (IGFBP-3), a tissue and circulating protein able to bind to IGFs, decreases drastically in the blood serum of patients with diffuse metastatic melanoma. In agreement with the clinical data, recombinant IGFBP-3 was found to inhibit the motility and invasiveness of cultured metastatic melanoma cells and to prevent growth of grafted melanomas in mice. The present work was aimed at identifying the signal transduction pathways underlying the anti-tumoral effects of IGFBP-3. We show that the anti-tumoral effect of IGFBP-3 is due to inhibition of the Wnt pathway and depends upon the presence of CD44, a receptor protein known to modulate Wnt signaling. Once it has entered the cell, IGFBP-3 binds the Wnt signalosome interacting specifically with its component GSK-3ß. As a consequence, the ß-catenin destruction complex dissociates from the LRP6 Wnt receptor and GSK-3ß is activated through dephosphorylation, becoming free to target cytoplasmic ß-catenin which is degraded by the proteasomal pathway. Altogether, the results suggest that IGFBP-3 is a novel and effective inhibitor of Wnt signaling. As IGFBP-3 is a physiological protein which has no detectable toxic effects either on cultured cells or live mice, it might qualify as an interesting new therapeutic agent in melanoma, and potentially many other cancers with a hyperactive Wnt signaling. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.


Assuntos
Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Via de Sinalização Wnt , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Melanoma/patologia , Metástase Neoplásica/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapas de Interação de Proteínas , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Pele/patologia , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
2.
BMC Cancer ; 15: 131, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25886394

RESUMO

BACKGROUND: Eukaryotic Initiation factor 6 (eIF6) is a peculiar translation initiation factor that binds to the large 60S ribosomal subunits, controlling translation initiation and participating in ribosome biogenesis. In the past, knowledge about the mechanisms adopted by the cells for controlling protein synthesis by extracellular stimuli has focused on two translation initiation factors (eIF4E and eIF2), however, recent data suggest eIF6 as a newcomer in the control of downstream of signal transduction pathways. eIF6 is over-expressed in tumors and its decreased expression renders cells less prone to tumor growth. A previous work from our laboratory has disclosed that over-expression of eIF6 in transformed cell lines markedly increased cell migration and invasion. METHODS: Here, we performed a quantitative proteomic analysis of membrane-associated proteins in A2780 ovarian cancer cells over-expressing eIF6. Differentially expressed proteins upon eIF6 overproduction were further investigated in silico by Ingenuity Pathway Analysis (IPA). RT-qPCR and Western blot were performed in order to validate the proteomic data. Furthermore, the effects of a potent and selective inhibitor ML-141 in A2780 cells were evaluated using transwell migration assay. Finally, we explored the effects of eIF6 over-expression on WM793 primary melanoma cell lines. RESULTS: We demonstrated that: (i) the genes up-regulated upon eIF6 overproduction mapped to a functional network corresponding to cellular movements in a highly significant way; (ii) cdc42 plays a pivotal role as an effector of enhanced migratory phenotype induced upon eIF6 over-expression; (iii) the variations in abundance observed for cdc42 protein occur at a post-transcriptional level; (iv) the increased cell migration/invasion upon eIF6 over-expression was generalizable to other cell line models. CONCLUSIONS: Collectively, our data confirm and further extend the role of eIF6 in enhancing cell migration/invasion. We show that a number of membrane-associated proteins indeed vary in abundance upon eIF6 over-expression, and that the up-regulated proteins can be located within a functional network controlling cell motility and tumor metastasis. Full understanding of the role eIF6 plays in the metastatic process is important, also in view of the fact that this factor is a potentially druggable target to be exploited for new anti-cancer therapies.


Assuntos
Fatores de Iniciação em Eucariotos/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/biossíntese , Invasividade Neoplásica , Movimento Celular/fisiologia , Feminino , Humanos , Invasividade Neoplásica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...