Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339316

RESUMO

For over a century, early researchers sought to study biological organisms in a laboratory setting, leading to the generation of both in vitro and in vivo model systems. Patient-derived models of cancer (PDMCs) have more recently come to the forefront of preclinical cancer models and are even finding their way into clinical practice as part of functional precision medicine programs. The PDMC Consortium, supported by the Division of Cancer Biology in the National Cancer Institute of the National Institutes of Health, seeks to understand the biological principles that govern the various PDMC behaviors, particularly in response to perturbagens, such as cancer therapeutics. Based on collective experience from the consortium groups, we provide insight regarding PDMCs established both in vitro and in vivo, with a focus on practical matters related to developing and maintaining key cancer models through a series of vignettes. Although every model has the potential to offer valuable insights, the choice of the right model should be guided by the research question. However, recognizing the inherent constraints in each model is crucial. Our objective here is to delineate the strengths and limitations of each model as established by individual vignettes. Further advances in PDMCs and the development of novel model systems will enable us to better understand human biology and improve the study of human pathology in the lab.

2.
Cancer Cell ; 41(8): 1516-1534.e9, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37541244

RESUMO

Acquired resistance to tyrosine kinase inhibitors (TKI), such as osimertinib used to treat EGFR-mutant lung adenocarcinomas, limits long-term efficacy and is frequently caused by non-genetic mechanisms. Here, we define the chromatin accessibility and gene regulatory signatures of osimertinib sensitive and resistant EGFR-mutant cell and patient-derived models and uncover a role for mammalian SWI/SNF chromatin remodeling complexes in TKI resistance. By profiling mSWI/SNF genome-wide localization, we identify both shared and cancer cell line-specific gene targets underlying the resistant state. Importantly, genetic and pharmacologic disruption of the SMARCA4/SMARCA2 mSWI/SNF ATPases re-sensitizes a subset of resistant models to osimertinib via inhibition of mSWI/SNF-mediated regulation of cellular programs governing cell proliferation, epithelial-to-mesenchymal transition, epithelial cell differentiation, and NRF2 signaling. These data highlight the role of mSWI/SNF complexes in supporting TKI resistance and suggest potential utility of mSWI/SNF inhibitors in TKI-resistant lung cancers.


Assuntos
Neoplasias Pulmonares , Animais , Humanos , Montagem e Desmontagem da Cromatina , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Cromatina , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/genética , Mutação , Mamíferos/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
3.
Cancer Cell ; 40(12): 1448-1453, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270276

RESUMO

3D patient tumor avatars (3D-PTAs) hold promise for next-generation precision medicine. Here, we describe the benefits and challenges of 3D-PTA technologies and necessary future steps to realize their potential for clinical decision making. 3D-PTAs require standardization criteria and prospective trials to establish clinical benefits. Innovative trial designs that combine omics and 3D-PTA readouts may lead to more accurate clinical predictors, and an integrated platform that combines diagnostic and therapeutic development will accelerate new treatments for patients with refractory disease.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Medicina de Precisão , Estudos Prospectivos , Oncologia
4.
Proc Natl Acad Sci U S A ; 106(43): 18351-6, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19805051

RESUMO

In cancer, genetically activated proto-oncogenes often induce "upstream" dependency on the activity of the mutant oncoprotein. Therapeutic inhibition of these activated oncoproteins can induce massive apoptosis of tumor cells, leading to sometimes dramatic tumor regressions in patients. The PI3K and MAPK signaling pathways are central regulators of oncogenic transformation and tumor maintenance. We hypothesized that upstream dependency engages either one of these pathways preferentially to induce "downstream" dependency. Therefore, we analyzed whether downstream pathway dependency segregates by genetic aberrations upstream in lung cancer cell lines. Here, we show by systematically linking drug response to genomic aberrations in non-small-cell lung cancer, as well as in cell lines of other tumor types and in a series of in vivo cancer models, that tumors with genetically activated receptor tyrosine kinases depend on PI3K signaling, whereas tumors with mutations in the RAS/RAF axis depend on MAPK signaling. However, efficacy of downstream pathway inhibition was limited by release of negative feedback loops on the reciprocal pathway. By contrast, combined blockade of both pathways was able to overcome the reciprocal pathway activation induced by inhibitor-mediated release of negative feedback loops and resulted in a significant increase in apoptosis and tumor shrinkage. Thus, by using a systematic chemo-genomics approach, we identify genetic lesions connected to PI3K and MAPK pathway activation and provide a rationale for combined inhibition of both pathways. Our findings may have implications for patient stratification in clinical trials.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Genótipo , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Fosfoinositídeo-3 Quinase
5.
J Clin Invest ; 119(10): 3000-10, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19759520

RESUMO

EGFR is a major anticancer drug target in human epithelial tumors. One effective class of agents is the tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. These drugs induce dramatic responses in individuals with lung adenocarcinomas characterized by mutations in exons encoding the EGFR tyrosine kinase domain, but disease progression invariably occurs. A major reason for such acquired resistance is the outgrowth of tumor cells with additional TKI-resistant EGFR mutations. Here we used relevant transgenic mouse lung tumor models to evaluate strategies to overcome the most common EGFR TKI resistance mutation, T790M. We treated mice bearing tumors harboring EGFR mutations with a variety of anticancer agents, including a new irreversible EGFR TKI that is under development (BIBW-2992) and the EGFR-specific antibody cetuximab. Surprisingly, we found that only the combination of both agents together induced dramatic shrinkage of erlotinib-resistant tumors harboring the T790M mutation, because together they efficiently depleted both phosphorylated and total EGFR. We suggest that these studies have immediate therapeutic implications for lung cancer patients, as dual targeting with cetuximab and a second-generation EGFR TKI may be an effective strategy to overcome T790M-mediated drug resistance. Moreover, this approach could serve as an important model for targeting other receptor tyrosine kinases activated in human cancers.


Assuntos
Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Quinazolinas/metabolismo , Afatinib , Anfirregulina , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Antineoplásicos/uso terapêutico , Cetuximab , Família de Proteínas EGF , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Epirregulina , Receptores ErbB/genética , Cloridrato de Erlotinib , Perfilação da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , Transplante de Neoplasias , Paclitaxel/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico , Transplante Heterólogo , Células Tumorais Cultivadas
6.
Clin Cancer Res ; 12(24): 7232-41, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17189394

RESUMO

In 2004, several investigators reported that somatic mutations in the epidermal growth factor receptor gene were associated with clinical responses to erlotinib and gefitinib in patients with non-small cell lung cancer. Since then, multiple groups have examined the biological properties that such mutations confer as well as the clinical relevance of these mutations in patients with non-small cell lung cancer. Although a tremendous amount of knowledge has been gained in the past 2 years, there remain a number of important epidemiologic, biological, and clinical questions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Resistencia a Medicamentos Antineoplásicos , Duplicação Gênica , Frequência do Gene , Humanos , Neoplasias Pulmonares/epidemiologia , Modelos Biológicos , Mutação/fisiologia
7.
J Thorac Oncol ; 1(9 Suppl): S2-7, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17409996

RESUMO

INTRODUCTION: Human bronchioloalveolar carcinoma (BAC) is a disease with an evolving definition. "Pure" BAC, characterized by a bronchioloalveolar growth pattern and no evidence of stromal, vascular, or pleural invasion, represents only 2 to 6% of non-small cell lung cancer (NSCLC) cases, but up to 20% of NSCLC cases may contain elements of BAC. This imprecise definition makes it difficult to perform epidemiologic analyses or to generate accurate animal models. However, because BAC appears to behave clinically differently from adenocarcinoma, a better understanding of this disease entity is imperative. METHODS/RESULTS: At the BAC Consensus Conference in 2004, our committee discussed issues relevant to BAC epidemiology, pathogenesis, and preclinical models. CONCLUSIONS: Elucidation of molecular events involved in BAC tumorigenesis will allow for more precise epidemiologic studies and improved animal models, which will enable development of more effective treatments against the disease.


Assuntos
Adenocarcinoma Bronquioloalveolar/epidemiologia , Adenocarcinoma Bronquioloalveolar/patologia , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/patologia , Adenocarcinoma/epidemiologia , Adenocarcinoma/patologia , Adenocarcinoma/fisiopatologia , Adenocarcinoma Bronquioloalveolar/fisiopatologia , Animais , Biópsia por Agulha , Diagnóstico Diferencial , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/fisiopatologia , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , Estadiamento de Neoplasias , Prevalência , Prognóstico , Medição de Risco , Ovinos
8.
PLoS Med ; 2(3): e73, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15737014

RESUMO

BACKGROUND: Lung adenocarcinomas from patients who respond to the tyrosine kinase inhibitors gefitinib (Iressa) or erlotinib (Tarceva) usually harbor somatic gain-of-function mutations in exons encoding the kinase domain of the epidermal growth factor receptor (EGFR). Despite initial responses, patients eventually progress by unknown mechanisms of "acquired" resistance. METHODS AND FINDINGS: We show that in two of five patients with acquired resistance to gefitinib or erlotinib, progressing tumors contain, in addition to a primary drug-sensitive mutation in EGFR, a secondary mutation in exon 20, which leads to substitution of methionine for threonine at position 790 (T790M) in the kinase domain. Tumor cells from a sixth patient with a drug-sensitive EGFR mutation whose tumor progressed on adjuvant gefitinib after complete resection also contained the T790M mutation. This mutation was not detected in untreated tumor samples. Moreover, no tumors with acquired resistance had KRAS mutations, which have been associated with primary resistance to these drugs. Biochemical analyses of transfected cells and growth inhibition studies with lung cancer cell lines demonstrate that the T790M mutation confers resistance to EGFR mutants usually sensitive to either gefitinib or erlotinib. Interestingly, a mutation analogous to T790M has been observed in other kinases with acquired resistance to another kinase inhibitor, imatinib (Gleevec). CONCLUSION: In patients with tumors bearing gefitinib- or erlotinib-sensitive EGFR mutations, resistant subclones containing an additional EGFR mutation emerge in the presence of drug. This observation should help guide the search for more effective therapy against a specific subset of lung cancers.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Antineoplásicos/farmacologia , Análise Mutacional de DNA , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Cloridrato de Erlotinib , Éxons , Feminino , Gefitinibe , Humanos , Pessoa de Meia-Idade , Mutação Puntual , Quinazolinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...