Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7403, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548805

RESUMO

Quantitative computed tomography (QCT)-based in silico models have demonstrated improved accuracy in predicting hip fractures with respect to the current gold standard, the areal bone mineral density. These models require that the femur bone is segmented as a first step. This task can be challenging, and in fact, it is often almost fully manual, which is time-consuming, operator-dependent, and hard to reproduce. This work proposes a semi-automated procedure for femur bone segmentation from CT images. The proposed procedure is based on the bone and joint enhancement filter and graph-cut algorithms. The semi-automated procedure performances were assessed on 10 subjects through comparison with the standard manual segmentation. Metrics based on the femur geometries and the risk of fracture assessed in silico resulting from the two segmentation procedures were considered. The average Hausdorff distance (0.03 ± 0.01 mm) and the difference union ratio (0.06 ± 0.02) metrics computed between the manual and semi-automated segmentations were significantly higher than those computed within the manual segmentations (0.01 ± 0.01 mm and 0.03 ± 0.02). Besides, a blind qualitative evaluation revealed that the semi-automated procedure was significantly superior (p < 0.001) to the manual one in terms of fidelity to the CT. As for the hip fracture risk assessed in silico starting from both segmentations, no significant difference emerged between the two (R2 = 0.99). The proposed semi-automated segmentation procedure overcomes the manual one, shortening the segmentation time and providing a better segmentation. The method could be employed within CT-based in silico methodologies and to segment large volumes of images to train and test fully automated and supervised segmentation methods.


Assuntos
Fêmur , Fraturas do Quadril , Humanos , Fêmur/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Extremidade Inferior , Fraturas do Quadril/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
2.
Entropy (Basel) ; 25(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36981283

RESUMO

We introduce the Random Walk Approximation (RWA), a new method to approximate the stationary solution of master equations describing stochastic processes taking place on graphs. Our approximation can be used for all processes governed by non-linear master equations without long-range interactions and with a conserved number of entities, which are typical in biological systems, such as gene regulatory or chemical reaction networks, where no exact solution exists. For linear systems, the RWA becomes the exact result obtained from the maximum entropy principle. The RWA allows having a simple analytical, even though approximated, form of the solution, which is global and easier to deal with than the standard System Size Expansion (SSE). Here, we give some theoretically sufficient conditions for the validity of the RWA and estimate the order of error calculated by the approximation with respect to the number of particles. We compare RWA with SSE for two examples, a toy model and the more realistic dual phosphorylation cycle, governed by the same underlying process. Both approximations are compared with the exact integration of the master equation, showing for the RWA good performances of the same order or better than the SSE, even in regions where sufficient conditions are not met.

3.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055282

RESUMO

An optimization work on dye-sensitized solar cells (DSSCs) based on both artificial and natural dyes was carried out by a fine synthesis work embedding gold nanoparticles in a TiO2 semiconductor and perfecting the TiO2 particle sizes of the scattering layer. Noble metal nanostructures are known for the surface plasmon resonance peculiarity that reveals unique properties and has been implemented in several fields such as sensing, photocatalysis, optical antennas and PV devices. By embedding gold nanoparticles in the mesoporous TiO2 layer and adding a scattering layer, we were able to boost the power conversion efficiency (PCE) to 10.8%, using an organic ruthenium complex. The same implementation was carried out using a natural dye, betalains, extracted from Sicilian prickly pear. In this case, the conversion efficiency doubled from 1 to 2% (measured at 1 SUN illumination, 100 mW/cm2 under solar simulation irradiation). Moreover, we obtained (measured at 0.1 SUN, 10 mW/cm2 under blue light LED irradiation) a record efficiency of 15% with the betalain-based dye, paving the way for indoor applications in organic natural devices. Finally, an attempt to scale up the system is shown, and a betalain-based- dye-sensitized solar module (DSSM), with an active area of 43.2 cm2 and a PCE of 1.02%, was fabricated for the first time.

4.
Phys Rev E ; 104(5): L052101, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942825

RESUMO

We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a[over ¯] and variance v_{a}. These two control parameters determine if the avalanche size tends to a stationary distribution (finite scale statistics with finite mean and variance, or power-law tailed statistics with exponent ∈(1,3]), or instead to a nonstationary regime with log-normal statistics. Numerical results and their statistical analysis are presented for a uniformly distributed growth rate, which are corroborated and generalized by mathematical results. The latter show that the numerically observed avalanche regimes exist for a wide family of growth rate distributions, and they provide a precise definition of the boundaries between the three regimes.

5.
Small ; 15(17): e1900323, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30941901

RESUMO

Gold nanoparticles (AuNPs) covered with mixtures of immiscible ligands present potentially anisotropic surfaces that can modulate their interactions at complex nano-bio interfaces. Mixed, self-assembled, monolayer (SAM)-protected AuNPs, prepared with incompatible hydrocarbon and fluorocarbon amphiphilic ligands, are used here to probe the molecular basis of surface phase separation and disclose the role of fluorinated ligands on the interaction with lipid model membranes and cells, by integrating in silico and experimental approaches. These results indicate that the presence of fluorinated amphiphilic ligands enhances the membrane binding ability and cellular uptake of gold nanoparticles with respect to those coated only with hydrogenated amphiphilic ligands. For mixed monolayers, computational results suggest that ligand phase separation occurs on the gold surface, and the resulting anisotropy affects the number of contacts and adhesion energies with a membrane bilayer. This reflects in a diverse membrane interaction for NPs with different surface morphologies, as determined by surface plasmon resonance, as well as differential effects on cells, as observed by flow cytometry and confocal microscopy. Overall, limited changes in monolayer features can significantly affect NP surface interfacial properties, which, in turn, affect the interaction of SAM-AuNPs with cellular membranes and subsequent effects on cells.


Assuntos
Flúor/química , Ouro/química , Hidrogênio/química , Nanopartículas Metálicas/química , Adsorção , Anisotropia , Apoptose , Linhagem Celular Tumoral , Membrana Celular/química , Simulação por Computador , Citometria de Fluxo , Humanos , Hidrocarbonetos/química , Ligantes , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Termodinâmica
6.
Nanoscale Adv ; 1(7): 2681-2689, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36132716

RESUMO

Plasmonic nanostructures are intensively studied for their ability to create electromagnetic hot spots, where a great variety of optical and spectroscopic processes can be amplified. Understanding how to control the formation of hot spots in a dynamic and reversible way is crucial to further expand the panorama of plasmon enhanced phenomena. In this work, we investigate the ability to modulate the hot spots in magnetic-plasmonic iron-doped silver nanoparticles dispersed in aqueous solution, by applying an external magnetic field. Evidence of magnetic field induction of hot spots was achieved by measuring the amplification of surface enhanced Raman scattering (SERS) from analytes dispersed in the solution containing Ag-Fe NPs. A polymeric shell was introduced around Ag-Fe NPs to confer colloidal stability, and it was found that the length and density of the polymer chains have a significant influence on SERS performance, and therefore on the formation of electromagnetic hot spots, under the action of the external magnetic field. These findings are expected to provide an important contribution to understanding the growing field of tuneable electromagnetic enhancement by external stimuli, such as magnetic fields applied to magnetic-plasmonic nanoparticles.

8.
Angew Chem Int Ed Engl ; 56(23): 6589-6593, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28464431

RESUMO

Oxygen evolution reaction (OER) is the most critical step in water splitting, still limiting the development of efficient alkaline water electrolyzers. Here we investigate the OER activity of Au-Fe nanoalloys obtained by laser-ablation synthesis in solution. This method allows a high amount of iron (up to 11 at %) to be incorporated into the gold lattice, which is not possible in Au-Fe alloys synthesized by other routes, due to thermodynamic constraints. The Au0.89 Fe0.11 nanoalloys exhibit strongly enhanced OER in comparison to the individual pure metal nanoparticles, lowering the onset of OER and increasing up to 20 times the current density in alkaline aqueous solutions. Such a remarkable electrocatalytic activity is associated to nanoalloying, as demonstrated by comparative examples with physical mixtures of gold and iron nanoparticles. These results open attractive scenarios to the use of kinetically stable nanoalloys for catalysis and energy conversion.

9.
Bioconjug Chem ; 28(1): 43-52, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28095690

RESUMO

Low intrinsic toxicity, high solubility, and stability are important and necessary features of gold nanoparticles to be used in the biomedical field. In this context, charged nanoparticles proved to be very versatile, and among them charged mixed-monolayer gold nanoparticles, displaying monolayers with well-defined morphologies, represent a paradigm. By using mixtures of hydrogenated and fluorinated thiols, the formation of monolayer domains may be brought to an extreme because of the immiscibility of fluorinated and hydrogenated chains. Following this rationale, mixed monolayer gold nanoparticles featuring ammonium, sulfonate, or carboxylic groups on their surface were prepared by using amphiphilic hydrogenated thiols and 1H,1H,2H,2H-perfluoro-alkanethiols. The toxicity of these systems was assessed in HeLa cells and was found to be, in general, low even for the cationic nanoparticles which usually show a high cytotoxicity and is comparable to that of homoligand gold nanoparticles displaying amphiphilic-charge neutral-hydrogenated or fluorinated thiolates in their monolayer. These properties make the mixed ligand monolayer gold nanoparticles an interesting new candidate for medical application.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Corantes Fluorescentes/química , Halogenação , Células HeLa , Humanos
10.
Nano Lett ; 17(2): 992-1000, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28027440

RESUMO

Rechargeable sodium-ion batteries are becoming a viable alternative to lithium-based technology in energy storage strategies, due to the wide abundance of sodium raw material. In the past decade, this has generated a boom of research interest in such systems. Notwithstanding the large number of research papers concerning sodium-ion battery electrodes, the development of a low-cost, well-performing anode material remains the largest obstacle to overcome. Although the well-known anatase, one of the allotropic forms of natural TiO2, was recently proposed for such applications, the material generally suffers from reduced cyclability and limited power, due to kinetic drawbacks and to its poor charge transport properties. A systematic approach in the morphological tuning of the anatase nanocrystals is needed, to optimize its structural features toward the electrochemical properties and to promote the material interaction with the conductive network and the electrolyte. Aiming to face with these issues, we were able to obtain a fine tuning of the nanoparticle morphology and to expose the most favorable nanocrystal facets to the electrolyte and to the conductive wrapping agent (graphene), thus overcoming the intrinsic limits of anatase transport properties. The result is a TiO2-based composite electrode able to deliver an outstandingly stability over cycles (150 mA h g-1 for more than 600 cycles in the 1.5-0.1 V potential range) never achieved with such a low content of carbonaceous substrate (5%). Moreover, it has been demonstrated for the first time than these outstanding performances are not simply related to the overall surface area of the different morphologies but have to be directly related to the peculiar surface characteristics of the crystals.

11.
ACS Nano ; 10(10): 9316-9325, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27662338

RESUMO

The spontaneous self-organization of dissimilar ligands on the surface of metal nanoparticles is a very appealing approach to obtain anisotropic "spherical" systems. In addition to differences in ligand length and end groups, a further thermodynamic driving force to control the self-assembled monolayer organization may become available if the ligands are inherently immiscible, as is the case of hydrogenated (H-) and fluorinated (F-) species. Here, we validate the viability of this approach by combining 19F NMR experiments and multiscale molecular simulations on large sets of mixed-monolayer-protected gold nanoparticles (NPs). The phase segregation of blends of F- and H-thiolates grafted on the surface of gold NPs allows a straightforward approach to patterned mixed monolayers, with the shapes of the monolayer domains being encoded in the structure of the F/H-thiolate ligands. The results obtained from this comprehensive study offer molecular design rules to achieve a precise control of inorganic nanoparticles protected by specifically patterned monolayers.

12.
Faraday Discuss ; 191: 527-543, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27459891

RESUMO

The use of binary blends of hydrogenated and fluorinated alkanethiolates represents an interesting approach to the construction of anisotropic hybrid organic-inorganic nanoparticles since the fluorinated and hydrogenated components are expected to self-sort on the nanoparticle surface because of their reciprocal phobicity. These mixed monolayers are therefore strongly non-ideal binary systems. The synthetic routes we explored to achieve mixed monolayer gold nanoparticles displaying hydrogenated and fluorinated ligands clearly show that the final monolayer composition is a non-linear function of the initial reaction mixture. Our data suggest that, under certain geometrical constraints, nucleation and growth of fluorinated domains could be the initial event in the formation of these mixed monolayers. The onset of domain formation depends on the structure of the fluorinated and hydrogenated species. The solubility of the mixed monolayer nanoparticles displayed a marked discontinuity as a function of the monolayer composition. When the fluorinated component content is small, the nanoparticle systems are fully soluble in chloroform, at intermediate content the nanoparticles become soluble in hexane and eventually they become soluble in fluorinated solvents only. The ranges of monolayer compositions in which the solubility transitions are observed depend on the nature of the thiols composing the monolayer.

13.
ChemSusChem ; 8(8): 1381-93, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25801848

RESUMO

Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells.


Assuntos
Benzimidazóis/química , Fontes de Energia Elétrica , Membranas Artificiais , Nanocompostos/química , Polímeros/química , Prótons , Temperatura , Zircônio/química , Eletroquímica , Fenômenos Mecânicos , Modelos Moleculares , Conformação Molecular , Nanopartículas/química , Ácidos Fosfóricos/química
14.
Nanoscale ; 6(3): 1423-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24309909

RESUMO

Nanoalloys of noble metals with transition metals are crucial components for the integration of plasmonics with magnetic and catalytic properties, as well as for the production of low-cost photonic devices. However, due to synthetic challenges in the realization of nanoscale solid solutions of noble metals and transition metals, very little is known about the composition dependence of plasmonic response in nanoalloys. Here we demonstrate for the first time that the elemental composition of Au-Fe nanoalloys obtained by laser ablation in liquid solution can be tuned by varying the liquid environment. Due to surface passivation and reaction with thiolated ligands, the nanoalloys obtained by our synthetic protocol are structurally and colloidally stable. Hence, we studied the dependence of the surface plasmon resonance (SPR) on the iron fraction and, for the first time, we observed surface enhanced Raman scattering (SERS) in Au-Fe nanoalloys. SPR and SERS performances are strongly affected by the iron content and are investigated using analytical and numerical models. By demonstrating the strong modification of plasmonic properties on the composition, our results provide important insights into the exploitation of Au-Fe nanoalloys in photonics, nanomedicine, magneto-plasmonic and plasmon-enhanced catalysis. Moreover, our findings show that several other plasmonic materials exist beyond gold and silver nanostructures.


Assuntos
Ouro/química , Ferro/química , Nanopartículas Metálicas/química , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Ligas , Coloides/química , Análise de Elementos Finitos , Lasers , Ligantes , Teste de Materiais , Microscopia Eletrônica de Transmissão , Modelos Teóricos , Óptica e Fotônica , Refratometria , Solventes , Compostos de Sulfidrila/química , Propriedades de Superfície
15.
Nanoscale ; 5(12): 5611-9, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23685617

RESUMO

We describe an environmentally friendly, top-down approach to the synthesis of Au89Fe11 nanoparticles (NPs). The plasmonic response of the gold moiety and the magnetism of the iron moiety coexist in the Au89Fe11 nanoalloy with strong modification compared to single element NPs, revealing a non-linear surface plasmon resonance dependence on the iron fraction and a transition from paramagnetic to a spin-glass state at low temperature. These nanoalloys are accessible to conjugation with thiolated molecules and they are promising contrast agents for magnetic resonance imaging.


Assuntos
Ligas/química , Meios de Contraste/química , Magnetismo , Nanopartículas Metálicas/química , Ouro/química , Ferro/química , Imageamento por Ressonância Magnética , Polietilenoglicóis/química , Temperatura , Termodinâmica
16.
Nanoscale ; 4(24): 7682-9, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23117700

RESUMO

A facile method for the synthesis of water dispersible Er(3+)/Yb(3+) and Tm(3+)/Yb(3+) doped upconverting GdF(3) nanoparticles is reported. Strong upconversion emissions are observed in the red (for Er/Yb doped) and near-infrared (for Tm/Yb doped) regions upon laser excitation at 980 nm. The PEG coating ensures a good dispersion of the system in water and reduces the radiationless de-excitation of the excited states of the Er(3+) and Tm(3+) ions by water molecules. The r(2) relaxivity values are quite high with respect to the common T(2)-relaxing agents (22.6 ± 3.4 mM(-1) s(-1) and 15.8 ± 3.4 mM(-1) s(-1) for the Tm/Yb and Er/Yb doped samples, respectively), suggesting that the present NPs can be interesting as T(2) weighted contrast agents for proton MRI purpose. Preliminary experiments conducted in vitro, in stem cell cultures, and in vivo, after subcutaneous injection of the lanthanide-doped GdF(3) NPs, indicate scarce toxic effects. After an intravenous injection in mice, the GdF(3) NPs localize mainly in the liver. The present results indicate that the present Er(3+)/Yb(3+) and Tm(3+)/Yb(3+) doped GdF(3) NPs are suitable candidates to be efficiently used as bimodal probes for both in vitro and in vivo optical and magnetic resonance imaging.


Assuntos
Meios de Contraste/química , Gadolínio/química , Elementos da Série dos Lantanídeos/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Animais , Colo/diagnóstico por imagem , Európio/química , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Radiografia , Água/química , Ítrio/química
17.
ChemSusChem ; 5(12): 2451-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23019172

RESUMO

An extensive morphological and structural study of two bimetallic "core-shell" carbon nitride nano-electrocatalysts with active sites based on Pt and Ni or on Pt and Fe is reported. The core-shell electrocatalysts are obtained by the pyrolysis of a precursor obtained by decorating a support composed of conducting particles with a hybrid inorganic-organic material. The electrocatalysts were investigated by high-resolution TEM, powder X-ray diffraction, and µ-Raman spectroscopy. The morphological and structural information presented here provides 1) insight into the microscopic features, affecting the electrochemical performance of the electrocatalyst materials determined in both ex situ measurements and single-cell configurations; and 2) an opportunity to study the effect of the different precursor chemistries on the structure and morphology of the bimetallic core-shell carbon nitride nano-electrocatalysts.


Assuntos
Ferro/química , Nanopartículas Metálicas/química , Níquel/química , Nitrilas/síntese química , Platina/química , Catálise , Técnicas Eletroquímicas , Microscopia Eletrônica de Transmissão , Nitrilas/química , Análise Espectral Raman , Propriedades de Superfície , Difração de Raios X
18.
Phys Chem Chem Phys ; 14(17): 5945-52, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22446993

RESUMO

The present study reports on the synthesis and the electrochemical behavior of Na(0.71)CoO(2), a promising candidate as cathode for Na-based batteries. The material was obtained in two different morphologies by a double-step route, which is cheap and easy to scale up: the hydrothermal synthesis to produce Co(3)O(4) with tailored and nanometric morphology, followed by the solid-state reaction with NaOH, or alternatively with Na(2)CO(3), to promote Na intercalation. Both products are highly crystalline and have the P2-Na(0.71)CoO(2) crystal phase, but differ in the respective morphologies. The material obtained from Na(2)CO(3) have a narrow particle length (edge to edge) distribution and 2D platelet morphology, while those from NaOH exhibit large microcrystals, irregular in shape, with broad particle length distribution and undefined exposed surfaces. Electrochemical analysis shows the good performances of these materials as a positive electrode for Na-ion half cells. In particular, Na(0.71)CoO(2) thin microplatelets exhibit the best behavior with stable discharge specific capacities of 120 and 80 mAh g(-1) at 5 and 40 mA g(-1), respectively, in the range 2.0-3.9 V vs. Na(+)/Na. These outstanding properties make this material a promising candidate to construct viable and high-performance Na-based batteries.

19.
J Am Chem Soc ; 133(44): 17652-61, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21970524

RESUMO

The promising properties of anatase TiO(2) nanocrystals exposing specific surfaces have been investigated in depth both theoretically and experimentally. However, a clear assessment of the role of the crystal faces in photocatalytic processes is still under debate. In order to clarify this issue, we have comprehensively explored the properties of the photogenerated defects and in particular their dependence on the exposed crystal faces in shape-controlled anatase. Nanocrystals were synthesized by solvothermal reaction of titanium butoxide in the presence of oleic acid and oleylamine as morphology-directing agents, and their photocatalytic performances were evaluated in the phenol mineralization in aqueous media, using O(2) as the oxidizing agent. The charge-trapping centers, Ti(3+), O(-), and O(2)(-), formed by UV irradiation of the catalyst were detected by electron spin resonance, and their abundance and reactivity were related to the exposed crystal faces and to the photoefficiency of the nanocrystals. In vacuum conditions, the concentration of trapped holes (O(-) centers) increases with increasing {001} surface area and photoactivity, while the amount of Ti(3+) centers increases with the specific surface area of {101} facets, and the highest value occurs for the sample with the worst photooxidative efficacy. These results suggest that {001} surfaces can be considered essentially as oxidation sites with a key role in the photoxidation, while {101} surfaces provide reductive sites which do not directly assist the oxidative processes. Photoexcitation experiments in O(2) atmosphere led to the formation of Ti(4+)-O(2)(-) oxidant species mainly located on {101} faces, confirming the indirect contribution of these surfaces to the photooxidative processes. Although this work focuses on the properties of TiO(2), we expect that the presented quantitative investigation may provide a new methodological tool for a more effective evaluation of the role of metal oxide crystal faces in photocatalytic processes.


Assuntos
Nanopartículas/química , Titânio/química , Catálise , Oxidantes/química , Oxigênio/química , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície , Raios Ultravioleta
20.
J Am Chem Soc ; 133(14): 5296-304, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21425840

RESUMO

Macroporous WO(3) films with inverted opal structure were synthesized by one-step procedure, which involves the self-assembly of the spherical templating agents and the simultaneous sol-gel condensation of the semiconductor alkoxide precursor. Transition metal doping, aimed to enhance the WO(3) electrical response, was carried out by including Cr(III) and Pt(IV) centers in the oxide matrix. It turned out that Cr remains as homogeneously dispersed Cr(III) centers inside the WO(3) host, while Pt undergoes reduction and aggregation to form nanoclusters located at the oxide surface. Upon interaction with NH(3), the electrical conductivity of transition metal doped-WO(3) increases, especially in the presence of Pt dopant, resulting in outstanding sensing properties (S = 110 ± 15 at T = 225 °C and [NH(3)] = 74 ppm). A mechanism was suggested to explain the excellent electrical response of Pt-doped films with respect to the Cr-doped ones. This associates the easy chemisorption of ammonia on the WO(3) nanocrystals, promoted by the inverted opal structure, with the catalytic action exerted by the surface Pt nanoclusters on the N-H bond dissociation. The overall results indicate that in Pt-doped WO(3) films the effects of the macroporosity positively combine with the electrical sensitization promoted by the metal nanoclusters, thus providing very lightweight materials which display high functionality even at relatively low temperatures. We expect that this synergistic effect can be exploited to realize other functional hierarchical metal oxide structures to be used as gas sensors or catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...