Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(1): 016102, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012533

RESUMO

Efficient soft X-ray spectroscopy in the laboratory is still a challenging task. Here, we report on new toroidal multilayer optics designed and applied with the laser-produced plasma (LPP) source of the Berlin Laboratory for innovative X-ray technologies. The optics are described and characterized, and the application of the updated source to scanning-free grazing emission X-ray fluorescence is demonstrated on thermoelectric gold-doped copper oxide nanofilms. The comparison with synchrotron measurements allows estimating a flux on the sample of approximately 7.5 × 109 photons/s in the 1 keV range on a 100 µm × 100 µm spot, emphasizing the suitability of the updated LPP source for the application in photon hungry experiments.

2.
RSC Adv ; 10(49): 29394-29401, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521098

RESUMO

The development of thin-film thermoelectric applications in sensing and energy harvesting can benefit largely from suitable deposition methods for earth-abundant materials. In this study, p-type copper oxide thin films have been prepared on soda lime silicate glass by direct current (DC) magnetron sputtering at room temperature from a pure copper metallic target in an argon atmosphere, followed by subsequent annealing steps at 300 °C under various atmospheres, namely air (CuO:air), nitrogen (CuO:N) and oxygen (CuO:O). The resultant films have been studied to understand the influence of various annealing atmospheres on the structural, spectroscopic and thermoelectric properties. X-ray diffraction (XRD) patterns of the films showed reflexes that could be assigned to those of crystalline CuO with a thin mixed Cu(I)Cu(II) oxide, which was also observed by near edge X-ray absorption fine structure spectroscopy (NEXAFS). The positive Seebeck coefficient (S) reached values of up to 204 µV K-1, confirming the p-type behavior of the films. Annealing under oxygen provided a significant improvement in the electrical conductivity up to 50 S m-1, resulting in a power factor of 2 µW m-1 K-2. The results reveal the interplay between the intrinsic composition and the thermoelectric performance of mixed copper oxide thin films, which can be finely adjusted by simply varying the annealing atmosphere.

3.
Anal Bioanal Chem ; 411(1): 217-229, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30402675

RESUMO

Biomedical devices are complex products requiring numerous assembly steps along the industrial process chain, which can carry the potential of surface contamination. Cleanliness has to be analytically assessed with respect to ensuring safety and efficacy. Although several analytical techniques are routinely employed for such evaluation, a reliable analysis chain that guarantees metrological traceability and quantification capability is desirable. This calls for analytical tools that are cascaded in a sensible way to immediately identify and localize possible contamination, both qualitatively and quantitatively. In this systematic inter-comparative approach, we produced and characterized sodium dodecyl sulfate (SDS) films mimicking contamination on inorganic and organic substrates, with potential use as reference materials for ambient techniques, i.e., ambient mass spectrometry (AMS), infrared and Raman spectroscopy, to reliably determine amounts of contamination. Non-invasive and complementary vibrational spectroscopy techniques offer a priori chemical identification with integrated chemical imaging tools to follow the contaminant distribution, even on devices with complex geometry. AMS also provides fingerprint outputs for a fast qualitative identification of surface contaminations to be used at the end of the traceability chain due to its ablative effect on the sample. To absolutely determine the mass of SDS, the vacuum-based reference-free technique X-ray fluorescence was employed for calibration. Convex hip liners were deliberately contaminated with SDS to emulate real biomedical devices with an industrially relevant substance. Implementation of the aforementioned analytical techniques is discussed with respect to combining multimodal technical setups to decrease uncertainties that may arise if a single technique approach is adopted. Graphical abstract ᅟ.


Assuntos
Dodecilsulfato de Sódio/análise , Análise Espectral/métodos , Vácuo , Humanos , Padrões de Referência , Dodecilsulfato de Sódio/normas , Propriedades de Superfície
4.
J Pharm Biomed Anal ; 150: 308-317, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29272815

RESUMO

There is a strong need in the medical device industry to decrease failure rates of biomedical devices by reducing the incidence of defect structures and contaminants during the production process. The detection and identification of defect structures and contaminants is crucial for many industrial applications. The present study exploits reference-free X-ray fluorescence (XRF) analysis as an analytical tool for the traceable characterization of surface contaminants of medical devices, in particular N,N'-ethylene-bis (stearamide), an ubiquitous compound used in many industrial applications as a release agent or friction reduction additive. Reference-free XRF analysis as primary method has been proven to be capable of underpinning all other applied methods since it yields the absolute mass deposition of the selected N,N'-ethylene-bis (stearamide) contaminant whilst X-ray absorption fine structure analysis determines the chemical species. Ambient vibrational spectroscopy and mass spectroscopy methodologies such as Fourier transform infrared, Raman, and secondary ion mass spectroscopy have been used in this systematic procedure providing an extensive range of complementary analyses. The calibration procedure described in this paper was developed using specially designed and fabricated model systems varying in thickness and substrate material. Furthermore, typical real medical devices such as both a polyethylene hip liner and a silver-coated wound dressing have been contaminated and investigated by these diverse methods, enabling testing of this developed procedure. These well-characterized samples may be used as calibration standards for bench top instrumentation from the perspective of providing traceable analysis of biomaterials and surface treatments. These findings demonstrate the potential importance and usefulness of combining complementary methods for a better understanding of the relevant organic materials.


Assuntos
Contaminação de Equipamentos , Equipamentos e Provisões , Espectrometria por Raios X/normas , Ácidos Esteáricos/análise , Calibragem , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massa de Íon Secundário , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...