Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140826, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040262

RESUMO

Aflatoxin B1 (AFB1) is one of the most potent carcinogens and a widespread food and feed contaminant. As for other toxins, many efforts are devoted to find efficient and environmentally-friendly methods to degrade AFB1, such as enzymatic treatments, thus improving the safety of food and feed products. In this regard, the dye decolorizing peroxidase of type B (DypB) can efficiently degrade AFB1. The molecular mechanism, which is required to drive protein optimization in view of the usage of DypB as a mycotoxin reduction agent in large scale application, is unknown. Here, we focused on the role of four DypB residues in the degradation of AFB1 by alanine-scanning (residues 156, 215, 239 and 246), which were identified from biochemical assays to be kinetically relevant for the degradation. As a result of DypB degradation, AFB1 is converted into four products. Interestingly, the relative abundancy of these products depends on the replaced residues. Molecular dynamics simulations were used to investigate the role of these residues in the binding step between protein and manganese, a metal ion which is expected to be involved in the degradation process. We found that the size of the haem pocket as well as conformational changes in the protein structure could play a role in determining the kinetics of AFB1 removal and, consequently, guide the process towards specific degradation products.


Assuntos
Aflatoxinas , Peroxidase , Peroxidases/metabolismo , Aflatoxina B1/metabolismo , Corantes/química
2.
Neuropathol Appl Neurobiol ; 47(1): 43-60, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32696999

RESUMO

AIMS: Parkinson's disease and related disorders are devastating neurodegenerative pathologies. Since α-synuclein was identified as a main component of Lewy bodies and neurites, efforts have been made to clarify the pathogenic mechanisms of α-synuclein's detrimental effects. α-synuclein oligomers are the most harmful species and may recruit and activate glial cells. Inflammation is emerging as a bridge between genetic susceptibility and environmental factors co-fostering Parkinson's disease. However, direct evidence linking inflammation to the harmful activities of α-synuclein oligomers or to the Parkinson's disease behavioural phenotype is lacking. METHODS: To clarify whether neuroinflammation influences Parkinson's disease pathogenesis, we developed: (i) a 'double-hit' approach in C57BL/6 naive mice where peripherally administered lipopolysaccharides were followed by intracerebroventricular injection of an inactive oligomer dose; (ii) a transgenic 'double-hit' model where lipopolysaccharides were given to A53T α-synuclein transgenic Parkinson's disease mice. RESULTS: Lipopolysaccharides induced a long-lasting neuroinflammatory response which facilitated the detrimental cognitive activities of oligomers. LPS-activated microglia and astrocytes responded differently to the oligomers with microglia activating further and acquiring a pro-inflammatory M1 phenotype, while astrocytes atrophied. In the transgenic 'double-hit' A53T mouse model, lipopolysaccharides aggravated cognitive deficits and increased microgliosis. Again, astrocytes responded differently to the double challenge. These findings indicate that peripherally induced neuroinflammation potentiates the α-synuclein oligomer's actions and aggravates cognitive deficits in A53T mice. CONCLUSIONS: The fine management of both peripheral and central inflammation may offer a promising therapeutic approach to prevent or slow down some behavioural aspects in α-synucleinopathies.


Assuntos
Inflamação/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Doenças do Sistema Nervoso/patologia , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , alfa-Sinucleína/farmacologia
3.
J Pharm Biomed Anal ; 144: 252-262, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28433344

RESUMO

Proteins and glycoproteins with therapeutic activity are susceptible to environmental factors, which can cause their degradation and the loss of their activity. Thus, the maintenance of their stability during the production process is a critical factor. In this work, a simple and rapid hydrophilic interaction liquid chromatography HILIC-UV method was validated in terms of accuracy, precision, linearity, LOD, LOQ and specificity and applied to the investigation of the stability of intact proteins and their neo-glycoconjugates with antigenic activity against tuberculosis. The method proved to be suitable for the estimation of the degradation of the proteins under critical conditions (i.e. freeze-thaw cycles) and for the monitoring of their coupling reaction with saccharidic moieties, without the need of sample preparation. In addition, the chromatographic analysis allowed to calculate the yields of the protein glycosylation reaction.


Assuntos
Cromatografia Líquida de Alta Pressão , Glicoproteínas , Interações Hidrofóbicas e Hidrofílicas , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
4.
Age (Dordr) ; 36(5): 9698, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25138794

RESUMO

Age-related memory deficits have recently been associated with the impaired expression of D-serine-dependent synaptic plasticity in neuronal networks of the hippocampal CA1 area. However, whether such functional alterations are common to the entire hippocampus during aging remains unknown. Here, we found that D-serine was also required for the induction of N-methyl-D-aspartate receptor (NMDA-R)-dependent long-term potentiation (LTP) at perforant path-granule cell synapses of the dentate gyrus. LTP as well as isolated NMDA-R synaptic potentials were impaired in slices from aged rats, but in contrast to the CA1, this defect was not reversed by exogenous D-serine. The lower activation of the glycine-binding site by the endogenous co-agonist does not therefore appear to be a critical mechanism underlying age-related deficits in NMDA-R activation in the dentate gyrus. Instead, our data highlight the role of changes in presynaptic inputs as illustrated by the weaker responsiveness of afferent glutamatergic fibers, as well as changes in postsynaptic NMDA-R density. Thus, our study indicates that although NMDA-R-dependent mechanisms driving synaptic plasticity are quite similar between hippocampal circuits, they show regional differences in their susceptibility to aging, which could hamper the development of effective therapeutic strategies aimed at reducing cognitive aging.


Assuntos
Envelhecimento/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Envelhecimento/fisiologia , Animais , Giro Denteado/metabolismo , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Feminino , Hipocampo/patologia , Masculino , Transtornos da Memória/fisiopatologia , Plasticidade Neuronal , Ratos , Ratos Sprague-Dawley
5.
J Biotechnol ; 184: 201-8, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-24905148

RESUMO

The main strategy for resistance to the herbicide glyphosate in plants is the overexpression of an herbicide insensitive, bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). A glyphosate resistance strategy based on the ability to degrade the herbicide can be useful to reduce glyphosate phytotoxicity to the crops. Here we present the characterization of glyphosate resistance in transgenic alfalfa (Medicago sativa L.) expressing a plant-optimized variant of glycine oxidase (GO) from Bacillus subtilis, evolved in vitro by a protein engineering approach to efficiently degrade glyphosate. Two constructs were used, one with (GO(TP+)) and one without (GO(TP-)) the pea rbcS plastid transit peptide. Molecular and biochemical analyses confirmed the stable integration of the transgene and the correct localization of the plastid-imported GO protein. Transgenic alfalfa plants were tested for glyphosate resistance both in vitro and in vivo. Two GO(TP+) lines showed moderate resistance to the herbicide in both conditions. Optimization of expression of this GO variant may allow to attain sufficient field resistance to glyphosate herbicides, thus providing a resistance strategy based on herbicide degradation.


Assuntos
Aminoácido Oxirredutases/genética , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Medicago sativa/genética , Aminoácido Oxirredutases/biossíntese , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Glicina/farmacologia , Medicago sativa/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Engenharia de Proteínas , Glifosato
6.
Cell Mol Life Sci ; 64(11): 1373-94, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17396222

RESUMO

D-Amino acid oxidase (DAAO) is a FAD-containing flavoenzyme that catalyzes the oxidative deamination of D-isomers of neutral and polar amino acids. This enzymatic activity has been identified in most eukaryotic organisms, the only exception being plants. In the various organisms in which it does occur, DAAO fulfills distinct physiological functions: from a catabolic role in yeast cells, which allows them to grow on D-amino acids as carbon and energy sources, to a regulatory role in the human brain, where it controls the levels of the neuromodulator D-serine. Since 1935, DAAO has been the object of an astonishing number of investigations and has become a model for the dehydrogenase-oxidase class of flavoproteins. Structural and functional studies have suggested that specific physiological functions are implemented through the use of different structural elements that control access to the active site and substrate/product exchange. Current research is attempting to delineate the regulation of DAAO functions in the contest of complex biochemical and physiological networks.


Assuntos
D-Aminoácido Oxidase/metabolismo , Proteínas Fúngicas/metabolismo , Leveduras/enzimologia , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Encéfalo/enzimologia , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/classificação , D-Aminoácido Oxidase/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Modelos Moleculares , Peroxissomos/metabolismo , Filogenia , Conformação Proteica , Especificidade por Substrato
7.
FEBS Lett ; 507(3): 323-6, 2001 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-11696364

RESUMO

D-Amino acid oxidase (DAAO) is a flavoprotein oxidase that catalyzes the oxidation of amino acids and produces ketoacids and H(2)O(2). The rate of product release from reduced DAAO from Rhodotorula gracilis is pH dependent and reflects a pK(a) of approximately 9.3. Binding of benzoate and 3,3,3-trifluoro-D-alanine to wild-type and Y238F-DAAO is also pH dependent (pK(a)=9.8+/-0.1 and 9.05+/-0.1, respectively for benzoate binding). However, binding of benzoate to Y223F-DAAO is pH independent, indicating the pK(a) is due to Y223-OH. This latter residue is thus involved in substrate binding, and probably is the group that governs product release. In contrast to this, the second active site tyrosine, Y238, has little influence on ligand binding.


Assuntos
Alanina/análogos & derivados , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/metabolismo , Rhodotorula/enzimologia , Alanina/metabolismo , Benzoatos/metabolismo , Domínio Catalítico , Concentração de Íons de Hidrogênio , Íons , Cinética
8.
Eur J Biochem ; 268(21): 5504-20, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11683874

RESUMO

The effects of pH, solvent isotope, and primary isotope replacement on substrate dehydrogenation by Rhodotorula gracilis d-amino acid oxidase were investigated. The rate constant for enzyme-FAD reduction by d-alanine increases approximately fourfold with pH, reflecting apparent pKa values of approximately 6 and approximately 8, and reaches plateaus at high and low pH. Such profiles are observed in all presteady-state and steady-state kinetic experiments, using both d-alanine and d-asparagine as substrates, and are inconsistent with the operation of a base essential to catalysis. A solvent deuterium isotope effect of 3.1 +/- 1.1 is observed on the reaction with d-alanine at pH 6; it decreases to 1.2 +/- 0.2 at pH 10. The primary substrate isotope effect on the reduction rate with [2-D]d-alanine is 9.1 +/- 1.5 at low and 2.3 +/- 0.3 at high pH. At pH 6.0, the solvent isotope effect is 2.9 +/- 0.8 with [2-D]d-alanine, and the primary isotope effect is 8.4 +/- 2.4 in D2O. Thus, primary and solvent kinetic isotope effects (KIEs) are independent of the presence of the other isotope, i.e. the 'double' kinetic isotope effect is the product of the individual KIEs, consistent with a transition state in which rupture of the two bonds of the substrate to hydrogen is concerted. These results support a hydride transfer mechanism for the dehydrogenation reaction in d-amino acid oxidase and argue against the occurrence of any intermediates in the process. A pKa,app of approximately 8 is interpreted to arise from the microscopic ionization of the substrate amino acid alpha-amino group, but also includes contributions from kinetic parameters.


Assuntos
D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/metabolismo , Deutério/química , Alanina/química , Alanina/metabolismo , Asparagina/química , Asparagina/metabolismo , Catálise , Concentração de Íons de Hidrogênio , Cinética , Prótons , Rhodotorula/enzimologia , Solventes/química , Espectrofotometria/métodos
9.
J Biol Chem ; 276(21): 18024-30, 2001 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-11359791

RESUMO

Brevibacterium sterolicum possesses two forms of cholesterol oxidase, one containing noncovalently bound FAD, the second containing a FAD covalently linked to His(69) of the protein backbone. The functional role of the histidyl-FAD bond in the latter cholesterol oxidase was addressed by studying the properties of the H69A mutant in which the FAD is bound tightly, but not covalently, and by comparison with native enzyme. The mutant retains catalytic activity, but with a turnover rate decreased 35-fold; the isomerization step of the intermediate 3-ketosteroid to the final product is also preserved. Stabilization of the flavin semiquinone and binding of sulfite are markedly decreased, this correlates with a lower midpoint redox potential (-204 mV compared with -101 mV for wild-type). Reconstitution with 8-chloro-FAD led to a holoenzyme form of H69A cholesterol oxidase with a midpoint redox potential of -160 mV. In this enzyme form, flavin semiquinone is newly stabilized, and a 3.5-fold activity increase is observed, this mimicking the thermodynamic effects induced by the covalent flavin linkage. It is concluded that the flavin 8alpha-linkage to a (N1)histidine is a pivotal factor in the modulation of the redox properties of this cholesterol oxidase to increase its oxidative power.


Assuntos
Brevibacterium/enzimologia , Colesterol Oxidase/metabolismo , Proteínas de Bactérias/metabolismo , Catálise , Flavinas/metabolismo , Oxirredução
10.
Proc Natl Acad Sci U S A ; 97(23): 12463-8, 2000 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-11070076

RESUMO

Flavin is one of the most versatile redox cofactors in nature and is used by many enzymes to perform a multitude of chemical reactions. d-Amino acid oxidase (DAAO), a member of the flavoprotein oxidase family, is regarded as a key enzyme for the understanding of the mechanism underlying flavin catalysis. The very high-resolution structures of yeast DAAO complexed with d-alanine, d-trifluoroalanine, and l-lactate (1.20, 1.47, and 1.72 A) provide strong evidence for hydride transfer as the mechanism of dehydrogenation. This is inconsistent with the alternative carbanion mechanism originally favored for this type of enzymatic reaction. The step of hydride transfer can proceed without involvement of amino acid functional groups. These structures, together with results from site-directed mutagenesis, point to orbital orientation/steering as the major factor in catalysis. A diatomic species, proposed to be a peroxide, is found at the active center and on the Re-side of the flavin. These results are of general relevance for the mechanisms of flavoproteins and lead to the proposal of a common dehydrogenation mechanism for oxidases and dehydrogenases.


Assuntos
D-Aminoácido Oxidase/química , Flavinas/química , Sítios de Ligação , Cristalografia por Raios X , Hidrogênio , Ligantes , Oxigênio , Estrutura Terciária de Proteína , Rhodotorula/enzimologia , Especificidade por Substrato
11.
Eur J Biochem ; 267(22): 6624-32, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11054115

RESUMO

The redox potentials and pH characteristics of D-amino-acid oxidase (EC 1.4.3.3; DAAO) from the yeast Rhodotorula gracilis and Trigonopsis variabilis were measured in the pH range 6.5-8.5 at 15 degrees C. In the free enzyme form, the anionic red semiquinone is quantitatively formed in both DAAOs, indicating that a two single-electron transfer mechanism is active. The semiquinone species is also thermodynamically stable, as indicated by the large separation of the single-electron transfer potentials. The first electron potential is pH-independent, while the second electron transfer is pH-dependent exhibiting a approximately -60 mV/pH unit slope, consistent with a one-electron/one-proton transfer. In the presence of the substrate analogue benzoate, the two-electron transfer is the thermodynamically favoured process for both DAAOs, with only a quantitative difference in the stabilization of the anionic semiquinone. Clearly binding of the substrate (or substrate analogue) modulates the redox properties of the two enzymes. In both cases, in the presence and absence of benzoate, the slope of Em vs. pH (-30 mV/pH unit) corresponds to an overall two-electron/one-proton transfer in the reduction to yield the anionic reduced flavin. This behaviour is similar to that reported for DAAO from pig kidney. The differences in potentials and the stability of the semiquinone intermediate measured for the three DAAOs probably stem from different isoalloxazine environments. In the case of R. gracilis DAAO, the low stability of the semiquinone form in the DAAO-benzoate complex can be explained by the shift in position of the side chain of Arg285 following substrate analogue binding.


Assuntos
Ascomicetos/enzimologia , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/metabolismo , Rhodotorula/enzimologia , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Espectrofotometria
12.
Arch Biochem Biophys ; 379(1): 90-6, 2000 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-10864446

RESUMO

Allantoicase is one of the enzymes of the purine degradation pathway and, interestingly, it appears to be lost, together with uricase and allantoinase, during mammalian evolution. Only allantoicases from the ascomycetes S. pombe, S. cerevisiae, and N. crassa have already been cloned, although the activity has been reported also in fishes and amphibians. By screening a cDNA expression library of Xenopus liver, we have cloned a 1491-bp-length cDNA coding for a 389 amino acid protein that shows an high similarity with the enzyme allantoicase. We have found that allantoicase mRNA is abundantly expressed in kidney and liver, but at much lower level is also present in brain, testis, intestine, and lung. We have detected enzymatic activity in crude extract from kidney, liver, and lung; we have also determined kinetic parameters (K(m) = 8.44 mM, V(max) = 6. 94 micromol min(-1) per mg protein) in kidney. During embryo development, we have detected allantoicase transcript and activity starting from 1 and 5 days after fertilization, respectively.


Assuntos
Ureo-Hidrolases/genética , Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , D-Aminoácido Oxidase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Cinética , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Ureo-Hidrolases/química , Xenopus/embriologia
13.
J Biol Chem ; 275(32): 24715-21, 2000 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-10821840

RESUMO

Arg(285), one of the very few conserved residues in the active site of d-amino acid oxidases, has been mutated to lysine, glutamine, aspartate, and alanine in the enzyme from the yeast Rhodotorula gracilis (RgDAAO). The mutated proteins are all catalytically competent. Mutations of Arg(285) result in an increase ( approximately 300-fold) of K(m) for the d-amino acid and in a large decrease ( approximately 500-fold) of turnover number. Stopped-flow analysis shows that the decrease in turnover is paralleled by a similar decrease in the rate of flavin reduction (k(2)), the latter still being the rate-limiting step of the reaction. In agreement with data from the protein crystal structure, loss of the guanidinium group of Arg(285) in the mutated DAAOs drastically reduces the binding of several carboxylic acids (e.g. benzoate). These results highlight the importance of this active site residue in the precise substrate orientation, a main factor in this redox reaction. Furthermore, Arg(285) DAAO mutants have spectral properties similar to those of the wild-type enzyme, but show a low degree of stabilization of the flavin semiquinone and a change in the redox properties of the free enzyme. From this, we can unexpectedly conclude that Arg(285) in the free enzyme form is involved in the stabilization of the negative charge on the N(1)-C(2)=O locus of the isoalloxazine ring of the flavin. We also suggest that the residue undergoes a conformational change in order to bind the carboxylate portion of the substrate/ligand in the complexed enzyme.


Assuntos
Arginina , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/metabolismo , Rhodotorula/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Sequência Conservada , D-Aminoácido Oxidase/genética , Primers do DNA , Inibidores Enzimáticos/farmacologia , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
14.
J Biol Chem ; 274(51): 36233-40, 1999 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-10593911

RESUMO

We have studied D-amino-acid oxidase from Rhodotorula gracilis by site-directed mutagenesis for the purpose of determining the presence or absence of residues having a possible role in acid/base catalysis. Tyr-223, one of the very few conserved residues among D-amino-acid oxidases, has been mutated to phenylalanine and to serine. Both mutants are active catalysts in turnover with D-alanine, and they are reduced by D-alanine slightly faster than wild-type enzyme. The Tyr-223 --> Phe mutant is virtually identical to the wild-type enzyme, whereas the Tyr-223 --> Ser mutant exhibits 60-fold slower substrate binding and at least 800-fold slower rate of product release relative to wild-type. These data eliminate Tyr-223 as an active-site acid/base catalyst. These results underline the importance of Tyr-223 for substrate binding and exemplify the importance of steric interactions in RgDAAO catalysis.


Assuntos
D-Aminoácido Oxidase/metabolismo , Sítios de Ligação/genética , Catálise , Sequência Conservada , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/genética , Cinética , Mutagênese Sítio-Dirigida , Rhodotorula , Relação Estrutura-Atividade , Especificidade por Substrato , Tirosina
15.
Biotechnol Appl Biochem ; 30(1): 27-33, 1999 08.
Artigo em Inglês | MEDLINE | ID: mdl-10467115

RESUMO

We have studied systematically the effect of the non-ionic surfactants Thesit and Triton X-100, and of propan-2-ol (used as a substrate solubilizer) on the activity of the cholesterol oxidases from Streptomyces hygroscopicus (SCO) and Brevibacterium sterolicum (BCO). Low concentrations of Thesit lead to an activity increase with both enzymes; at higher surfactant concentrations the opposite effect occurs. Triton X-100 inactivates both enzymes at all concentrations. It is deduced that these surfactants exert their effects by interaction with the enzymes and not by affecting micellar phenomena. The effect of propan-2-ol on SCO, in contrast with that on BCO, depends on the buffer concentration (potassium phosphate). Other organic solvents induce results similar to those obtained with SCO and propan-2-ol. A significant difference between the two cholesterol oxidases emerges when stability is tested at 25 degrees C and in the presence of different concentrations of propan-2-ol: BCO activity is rapidly inactivated, whereas SCO still has 70% of the initial activity after 5 h in the presence of 30% propan-2-ol. From our results, SCO seems to be the catalyst of choice in comparison with BCO for the exploitation of cholesterol oxidases in biotechnology and applied biochemistry.


Assuntos
Brevibacterium/metabolismo , Colesterol Oxidase/metabolismo , Solventes/farmacologia , Streptomyces/enzimologia , Tensoativos/farmacologia , Soluções Tampão , Estabilidade Enzimática , Espectrometria de Fluorescência
16.
Eur J Biochem ; 264(1): 140-51, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10447682

RESUMO

The kinetic properties of two cholesterol oxidases, one from Brevibacterium sterolicum (BCO) the other from Streptomyces hygroscopicus (SCO) were investigated. BCO works via a ping-pong mechanism, whereas the catalytic pathway of SCO is sequential. The turnover numbers at infinite cholesterol and oxygen concentrations are 202 s-1 and 105 s-1 for SCO and BCO, respectively. The rates of flavin reduction extrapolated to saturating substrate concentration, under anaerobic conditions, are 235 s-1 for BCO and 232 s-1 for SCO (in the presence of 1% Thesit and 10% 2-propanol). With reduced SCO the rate of Delta5-6-->Delta4-5 isomerization of the intermediate 5-cholesten-3-one to final product is slow (0.3 s-1). With oxidized SCO and BCO the rate of isomerization is much faster ( approximately 300 s-1), thus it is not rate-limiting for catalysis. The kinetic behaviour of both reduced COs towards oxygen is unusual in that they exhibit apparent saturation with increasing oxygen concentrations (extrapolated rates approximately 250 s-1 and 1.3 s-1, for BCO and SCO, respectively): too slow to account for catalysis. For BCO the kinetic data are compatible with a step preceding the reaction with oxygen, involving interconversion of reactive and nonreactive forms of the enzyme. We suggest that the presence of micelles in the reaction medium, due to the necessary presence of detergents to solubilize the substrate, influence the availability or reactivity of oxygen towards the enzyme. The rate of re-oxidation of SCO in the presence of product is also too slow to account for catalysis, probably due to the impossibility of producing quantitatively the reduced enzyme-product complexes.


Assuntos
Brevibacterium/enzimologia , Colesterol Oxidase/metabolismo , Streptomyces/enzimologia , Isomerismo , Cinética , Especificidade por Substrato
17.
Protein Expr Purif ; 14(2): 289-94, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9790893

RESUMO

This paper reports a novel expression system constructed to maximize the production in Escherichia coli of d-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO). We produced a recombinant plasmid by the insertion of the cDNA encoding for the RgDAAO into the multiple cloning site of the expression vector pT7.7 (pT7-DAAO), downstream of the T7 RNA polymerase binding site. The pT7-DAAO, which encodes a fully active fusion protein with six additional residues at the N-terminus of DAAO, was used to transform the BL21(DE3) and BL21(DE3)pLysS E. coli cells. In the latter host and under optimal IPTG induction conditions, soluble and active chimeric DAAO was expressed in these cells up to 930 U/g of cell (and a fermentation yield of 2300 U/liter of fermentation broth), with a specific activity of 8.8 U/mg protein. RgDAAO represents approximately 8% of the total soluble protein content of the cell.


Assuntos
D-Aminoácido Oxidase/química , Rhodotorula/enzimologia , Alanina/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/química , Expressão Gênica/genética , Isopropiltiogalactosídeo/farmacologia , Cinética , Plasmídeos/genética , Proteínas Recombinantes de Fusão/genética
18.
Biochem J ; 330 ( Pt 2): 615-21, 1998 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-9480866

RESUMO

When analysed by isoelectric focusing, D-amino acid oxidase from the yeast Rhodotorula gracilis normally consists of three molecular isoforms (pI 7.8, 7.4 and 7.2, respectively) all with the same N-terminal sequence. However, only a single band of pI 7.8 is detected with the recombinant wild-type protein expressed in E. coli. To determine whether the molecular basis of this heterogeneity is due to proteolysed forms of the protein, we treated R. gracilis D-amino acid oxidase with various proteases. Limited proteolysis by chymotrypsin and thermolysin produced truncated and nicked monomeric holoenzymes containing two polypeptides of approximately 34 kDa (Met1-Leu312) and one of approximately 5 kDa (Ala319-Arg364 with chymotrypsin or Ala319-Ala362 with thermolysin). On the other hand, treatment with endoproteinase Glu-C gave a dimeric holoenzyme lacking the C-terminal SKL tripeptide. This cleavage of Glu365-Ser366 peptide bond caused the disappearance of the three isoelectric bands and a single homogeneous band (pI 7.2) appeared. To study this protein form, we used site-directed mutagenesis to produce a mutant form of R. gracilis D-amino acid oxidase lacking the SKL C-terminal tripeptide (which is the targeting sequence PTS1 for peroxisomal proteins). As expected, the SKL-deleted mutant gave a single band (pI 7.2) in isoelectric focusing. The three-band pattern of native yeast enzyme was generated by in vitro experiments using an equimolar mixture of the wild-type (pI 7.8) and the SKL-deleted recombinant (pI 7.2) DAAOs. The microheterogeneity of yeast DAAO thus stems from the association of two polypeptide chains differing in the C-terminal tripeptide, giving three different holoenzyme dimers.


Assuntos
D-Aminoácido Oxidase/química , Isoenzimas/química , Rhodotorula/enzimologia , Quimotripsina/metabolismo , D-Aminoácido Oxidase/genética , Dimerização , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Focalização Isoelétrica , Isoenzimas/genética , Peso Molecular , Mutagênese Sítio-Dirigida , Mapeamento de Peptídeos , Termolisina/metabolismo
19.
Hum Gene Ther ; 9(2): 185-93, 1998 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-9472778

RESUMO

Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS) generated in the stereoselective deamination of D-amino acids catalyzed by D-amino acid oxidase (DAAO). H2O2 readily crosses cellular membranes and damages DNA, proteins, and lipids. The scarcity of DAAO substrates in mammalian organisms and its co-localization with catalase in the peroxisomal matrix suggested that the cytotoxicity of ROS could be harnessed by administration of D-amino acids to tumor cells ectopically expressing DAAO in the cytoplasm. To evaluate this hypothesis, the cDNA encoding the highly active DAAO from the red yeast Rhodotorula gracilis was mutated to remove the carboxy-terminal peroxisomal targeting sequence. A clonal line of 9L glioma cells stably transfected with this construct (9Ldaao17) was found to synthesize active R. gracilis DAAO. Exposure of 9Ldaao17 cells to D-alanine resulted in cytotoxicity at concentrations that were nontoxic to parental 9L cells. Depletion of cellular glutathione further sensitized 9Ldaao17 cells to D-alanine (D-Ala). This result, combined with stimulation of pentose phosphate pathway activity and the production of extracellular H2O2 by 9Ldaao17 cells incubated with D-alanine implicates oxidative stress as the mediator of cytotoxicity. These results demonstrate that expression of R. gracilis DAAO in tumor cells confers chemosensitivity to D-alanine that could be exploited as a novel cancer gene therapy paradigm.


Assuntos
Alanina/toxicidade , Aminoácido Oxirredutases/genética , Neoplasias Encefálicas/tratamento farmacológico , Terapia Genética/métodos , Gliossarcoma/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Rhodotorula/enzimologia , Alanina/uso terapêutico , Aminoácido Oxirredutases/biossíntese , Aminoácido Oxirredutases/uso terapêutico , Animais , Antioxidantes/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Catalase/metabolismo , Gliossarcoma/enzimologia , Gliossarcoma/metabolismo , Gliossarcoma/patologia , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Ratos , Rhodotorula/genética , Células Tumorais Cultivadas
20.
Arch Biochem Biophys ; 343(1): 1-5, 1997 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-9210639

RESUMO

The holoenzyme form of Rhodotorula gracilis D-amino acid oxidase, an 80-kDa homodimer, reacted only to a limited extent with general thiol reagents (2,2'-dithiodipyridine, 5,5'-dithiobis(2-nitrobenzoic acid), and N-[7-(dimethylamino)-4-methylcoumarinyl]maleimide) (60% residual activity), whereas the monomeric apoprotein was completely inactivated and denatured by these reagents. To investigate the presence of thiol residue(s) in the active site of the enzyme, the apoprotein was reconstituted with the 8-(methylsulfonyl)-FAD chemical-affinity probe. Competitive inhibition between this analogue and FAD for apoprotein binding was observed. The covalent attachment of the flavin analogue to the apoprotein was complete after approximately 20 h of incubation and the flavinylated enzyme, containing 8-(cysteinyl)-FAD, was monomeric and inactive. After HPLC isolation of the flavin-labeled tryptic peptides, Cys208 was identified as the only cysteine to react with the FAD analogue. These results show that a single cysteine of R. gracilis D-amino acid oxidase reacts with the flavin analogue and that this is located near or at the FAD-binding domain.


Assuntos
Cisteína/química , D-Aminoácido Oxidase/química , Flavinas/metabolismo , Rhodotorula/enzimologia , Marcadores de Afinidade , D-Aminoácido Oxidase/metabolismo , Reagentes de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...