Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(2): R59-R60, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36693307

RESUMO

Amidst a global biodiversity crisis1, the word 'biodiversity' has become indispensable for conservation and management2. Yet, biodiversity is often used as a buzzword in scientific literature. Resonant titles of papers claiming to have studied 'global biodiversity' may be used to promote research focused on a few taxonomic groups, habitats, or facets of biodiversity - taxonomic, (phylo)genetic, or functional. This usage may lead to extrapolating results outside the target systems of these studies with direct consequences for our understanding of life on Earth and its practical conservation. Here, we used a random sample of papers with the word 'biodiversity' in their title to take a long view of the use of this term. Despite improvements in analytical tools, monitoring technologies, and data availability3,4, we found that the taxonomic scope of research articles has not increased in recent years. We also show that studies with a wider taxonomic scope attract more citations and online attention. Our results have broad ramifications for understanding how extrapolating from studies with narrow taxonomic scope affects our view of global biodiversity and conservation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Ecossistema , Planeta Terra
2.
Insect Mol Biol ; 32(1): 56-68, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36251429

RESUMO

The development of genetically modified mosquitoes (GMM) and their subsequent field release offers innovative approaches for vector control of malaria. A non-gene drive self-limiting male-bias Ag(PMB)1 strain has been developed in a 47-year-old laboratory G3 strain of Anopheles gambiae s.l. When Ag(PMB)1 males are crossed to wild-type females, expression of the endonuclease I-PpoI during spermatogenesis causes the meiotic cleavage of the X chromosome in sperm cells, leading to fertile offspring with a 95% male bias. However, World Health Organization states that the functionality of the transgene could differ when inserted in different genetic backgrounds of Anopheles coluzzii which is currently a predominant species in several West-African countries and thus a likely recipient for a potential release of self-limiting GMMs. In this study, we introgressed the transgene from the donor Ag(PMB)1 by six serial backcrosses into two recipient colonies of An. coluzzii that had been isolated in Mali and Burkina Faso. Scans of informative Single Nucleotide Polymorphism (SNP) markers and whole-genome sequencing analysis revealed a nearly complete introgression of chromosomes 3 and X, but a remarkable genomic divergence in a large region of chromosome 2 between the later backcrossed (BC6) transgenic offspring and the recipient paternal strains. These findings suggested to extend the backcrossing breeding strategy beyond BC6 generation and increasing the introgression efficiency of critical regions that have ecological and epidemiological implications through the targeted selection of specific markers. Disregarding differential introgression efficiency, we concluded that the phenotype of the sex ratio distorter is stable in the BC6 introgressed An. coluzzii strains.


Assuntos
Anopheles , Feminino , Animais , Masculino , Anopheles/genética , Razão de Masculinidade , Mosquitos Vetores/genética , Sêmen , Transgenes
3.
Nat Commun ; 12(1): 4589, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321476

RESUMO

CRISPR-based gene-drives targeting the gene doublesex in the malaria vector Anopheles gambiae effectively suppressed the reproductive capability of mosquito populations reared in small laboratory cages. To bridge the gap between laboratory and the field, this gene-drive technology must be challenged with vector ecology.Here we report the suppressive activity of the gene-drive in age-structured An. gambiae populations in large indoor cages that permit complex feeding and reproductive behaviours.The gene-drive element spreads rapidly through the populations, fully supresses the population within one year and without selecting for resistance to the gene drive. Approximate Bayesian computation allowed retrospective inference of life-history parameters from the large cages and a more accurate prediction of gene-drive behaviour under more ecologically-relevant settings.Generating data to bridge laboratory and field studies for invasive technologies is challenging. Our study represents a paradigm for the stepwise and sound development of vector control tools based on gene-drive.


Assuntos
Anopheles/genética , Tecnologia de Impulso Genético , Mosquitos Vetores/genética , Animais , Animais Geneticamente Modificados , Teorema de Bayes , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Abrigo para Animais , Malária/transmissão , Controle de Mosquitos , Estudos Retrospectivos
4.
J Appl Ecol ; 57(10): 2086-2096, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33149368

RESUMO

The development of genetically modified (GM) mosquitoes and their subsequent field release offers innovative and cost-effective approaches to reduce mosquito-borne diseases, such as malaria. A sex-distorting autosomal transgene has been developed recently in G3 mosquitoes, a laboratory strain of the malaria vector Anopheles gambiae s.l. The transgene expresses an endonuclease called I-PpoI during spermatogenesis, which selectively cleaves the X chromosome to result in ~95% male progeny. Following the World Health Organization guidance framework for the testing of GM mosquitoes, we assessed the dynamics of this transgene in large cages using a joint experimental modelling approach.We performed a 4-month experiment in large, indoor cages to study the population genetics of the transgene. The cages were set up to mimic a simple tropical environment with a diurnal light-cycle, constant temperature and constant humidity. We allowed the generations to overlap to engender a stable age structure in the populations. We constructed a model to mimic the experiments, and used the experimental data to infer the key model parameters.We identified two fitness costs associated with the transgene. First, transgenic adult males have reduced fertility and, second, their female progeny have reduced pupal survival rates. Our results demonstrate that the transgene is likely to disappear in <3 years under our confined conditions. Model predictions suggest this will be true over a wide range of background population sizes and transgene introduction rates. Synthesis and applications. Our study is in line with the World Health Organization guidance recommendations in regard to the development and testing of GM mosquitoes. Since the transgenic sex ratio distorter strain (Ag(PMB)1) has been considered for genetic vector control of malaria, we recorded the dynamics of this transgene in indoor-large cage populations and modelled its post-release persistence under different scenarios. We provide a demonstration of the self-limiting nature of the transgene, and identified new fitness costs that will further reduce the longevity of the transgene after its release. Finally, our study has showcased an alternative and effective statistical method for characterizing the phenotypic expression of a transgene in an insect pest population.

5.
Ecol Evol ; 10(20): 11192-11216, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144959

RESUMO

A biocultural diversity approach integrates plant biology and germplasm dispersal processes with human cultural diversity. An increasing number of studies have identified cultural factors and ethnolinguistic barriers as the main drivers of the genetic diversity in crop plants. Little is known about how anthropogenic processes have affected the evolution of tree crops over the entire time scale of their interaction with humans. In Asia and the Mediterranean, common walnut (Juglans regia L.) and sweet chestnut (Castanea sativa Mill.) have been economically and culturally important crops for millennia; there, in ancient times, they were invested with symbolic and religious significance. In this study, we detected a partial geographic congruence between the ethno-linguistic repartition of human communities, the distribution of major cognitive sets of word-related terms, and the inferred genetic clusters of common walnut and sweet chestnut populations across Eurasia. Our data indicated that isolation by distance processes, landscape heterogeneity and cultural boundaries might have promoted simultaneously human language diversification and walnut/chestnut differentiation across the same geographic macro-regions. Hotspots of common walnut and sweet chestnut genetic diversity were associated with areas of linguistic enrichment in the Himalayas, Trans-Caucasus, and Pyrenees Mountains, where common walnuts and sweet chestnuts had sustained ties to human culture since the Early Bronze Age. Our multidisciplinary approach supported the indirect and direct role of humans in shaping walnut and chestnut diversity across Eurasia from the EBA (e.g., Persian Empire and Greek-Roman colonization) until the first evidence of active selection and clonal propagation by grafting of both species. Our findings highlighted the benefit of an efficient integration of the relevant cultural factors in the classical genome (G) × environmental (E) model and the urgency of a systematic application of the biocultural diversity concept in the reconstruction of the evolutionary history of tree species.

6.
PLoS One ; 12(3): e0172541, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28257470

RESUMO

Common walnut (Juglans regia L) is an economically important species cultivated worldwide for its high-quality wood and nuts. It is generally accepted that after the last glaciation J. regia survived and grew in almost completely isolated stands in Asia, and that ancient humans dispersed walnuts across Asia and into new habitats via trade and cultural expansion. The history of walnut in Europe is a matter of debate, however. In this study, we estimated the genetic diversity and structure of 91 Eurasian walnut populations using 14 neutral microsatellites. By integrating fossil pollen, cultural, and historical data with population genetics, and approximate Bayesian analysis, we reconstructed the demographic history of walnut and its routes of dispersal across Europe. The genetic data confirmed the presence of walnut in glacial refugia in the Balkans and western Europe. We conclude that human-mediated admixture between Anatolian and Balkan walnut germplasm started in the Early Bronze Age, and between western Europe and the Balkans in eastern Europe during the Roman Empire. A population size expansion and subsequent decline in northeastern and western Europe was detected in the last five centuries. The actual distribution of walnut in Europe resulted from the combined effects of expansion/contraction from multiple refugia after the Last Glacial Maximum and its human exploitation over the last 5,000 years.


Assuntos
Variação Genética , Juglans/genética , Repetições de Microssatélites/genética , Ásia , Península Balcânica , Europa (Continente) , Fósseis , Genética Populacional/história , Genética Populacional/métodos , História Antiga , Humanos , Juglans/crescimento & desenvolvimento , Pólen/genética
7.
PLoS One ; 10(8): e0135980, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332919

RESUMO

Common walnut (Juglans regia L) is an economically important species cultivated worldwide for its wood and nuts. It is generally accepted that J. regia survived and grew spontaneously in almost completely isolated stands in its Asian native range after the Last Glacial Maximum. Despite its natural geographic isolation, J. regia evolved over many centuries under the influence of human management and exploitation. We evaluated the hypothesis that the current distribution of natural genetic resources of common walnut in Asia is, at least in part, the product of ancient anthropogenic dispersal, human cultural interactions, and afforestation. Genetic analysis combined with ethno-linguistic and historical data indicated that ancient trade routes such as the Persian Royal Road and Silk Road enabled long-distance dispersal of J. regia from Iran and Trans-Caucasus to Central Asia, and from Western to Eastern China. Ancient commerce also disrupted the local spatial genetic structure of autochthonous walnut populations between Tashkent and Samarkand (Central-Eastern Uzbekistan), where the northern and central routes of the Northern Silk Road converged. A significant association between ancient language phyla and the genetic structure of walnut populations is reported even after adjustment for geographic distances that could have affected both walnut gene flow and human commerce over the centuries. Beyond the economic importance of common walnut, our study delineates an alternative approach for understanding how the genetic resources of long-lived perennial tree species may be affected by the interaction of geography and human history.


Assuntos
Juglans/genética , Nozes/genética , Ásia , Fluxo Gênico/genética , Geografia , Humanos , Árvores/genética
8.
Am J Bot ; 100(5): 951-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23613354

RESUMO

PREMISE OF THE STUDY: Large-scale studies on the genetic diversity of forest trees are relevant for the inventory, conservation, and management of genetic resources and provide an insight into the geographical origins of the species. This approach is appropriate to use with Castanea sativa, a tree of great economic importance and the only species from the genus Castanea in Europe. The history of C. sativa was deduced from fossil pollen data, but the large-scale genetic structure of this species needs to be elucidated. We evaluated the genetic diversity of C. sativa to define previously unclarified genetic relationships among the populations from Turkey and those from Greece and western Europe. The influence of natural events such as glaciations and human impact in terms of species distribution are discussed. • METHODS: Wild chestnut trees (779) were sampled in 31 European sites. Six polymorphic microsatellites were used for the analysis. A set of measures of intra- and interpopulation genetic statistics were calculated. The population structure was inferred by using a Bayesian approach. • KEY RESULTS: The population structure showed a genetic divergence between the eastern (Greek and Turkish) and western (Italian and Spanish) populations. Two gene pools and a zone of gene introgression in Turkey were revealed. • CONCLUSIONS: The inferred population structure shows a strong geographical correspondence with the hypothesized glacial refugia and rules out the migration of the chestnut from Turkey and Greece to Italy. The homogeneous gene pool observed in Italy and Spain could have been originated from common refugia along with human-mediated colonization.


Assuntos
Fagaceae/genética , Repetições de Microssatélites/genética , Ásia , DNA de Plantas/genética , Demografia , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...