Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(17): 4148-4157, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38652843

RESUMO

We propose a framework for describing the dynamics associated with the adsorption of small molecules to liquid-vapor interfaces using an intermediate resolution between traditional continuum theories that are bereft of molecular detail and molecular dynamics simulations that are replete with them. In particular, we develop an effective single particle equation of motion capable of describing the physical processes that determine thermal and mass accommodation probabilities. The effective equation is parametrized with quantities that vary through space away from the liquid-vapor interface. Of particular importance in describing the early time dynamics is the spatially dependent friction, for which we propose a numerical scheme to evaluate from molecular simulation. Taken together with potentials of mean force computable with importance sampling methods, we illustrate how to compute the mass accommodation coefficient and residence time distribution. Throughout, we highlight the case of ozone adsorption in aqueous solutions and its dependence on electrolyte composition.

2.
Chem Sci ; 15(2): 736-756, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179528

RESUMO

The oxidation of iodide by ozone occurs at the sea-surface and within sea spray aerosol, influencing the overall ozone budget in the marine boundary layer and leading to the emission of reactive halogen gases. A detailed account of the surface mechanism has proven elusive, however, due to the difficulty in quantifying multiphase kinetics. To obtain a clearer understanding of this reaction mechanism at the air-water interface, we report pH-dependent oxidation kinetics of I- in single levitated microdroplets as a function of [O3] using a quadrupole electrodynamic trap and an open port sampling interface for mass spectrometry. A kinetic model, constrained by molecular simulations of O3 dynamics at the air-water interface, is used to understand the coupled diffusive, reactive, and evaporative pathways at the microdroplet surface, which exhibit a strong dependence on bulk solution pH. Under acidic conditions, the surface reaction is limited by O3 diffusion in the gas phase, whereas under basic conditions the reaction becomes rate limited on the surface. The pH dependence also suggests the existence of a reactive intermediate IOOO- as has previously been observed in the Br- + O3 reaction. Expressions for steady-state surface concentrations of reactants are derived and utilized to directly compute uptake coefficients for this system, allowing for an exploration of uptake dependence on reactant concentration. In the present experiments, reactive uptake coefficients of O3 scale weakly with bulk solution pH, increasing from 4 × 10-4 to 2 × 10-3 with decreasing solution pH from pH 13 to pH 3.

3.
J Chem Phys ; 156(20): 204110, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649842

RESUMO

Two-dimensional electronic-vibrational (2DEV) spectra have the capacity to probe electron-nuclear interactions in molecules by measuring correlations between initial electronic excitations and vibrational transitions at a later time. The trajectory-based semiclassical optimized mean trajectory approach is applied to compute 2DEV spectra for a system with excitonically coupled electronic excited states vibronically coupled to a chromophore vibration. The chromophore mode is in turn coupled to a bath, inducing redistribution of vibrational populations. The lineshapes and delay-time dynamics of the resulting spectra compare well with benchmark calculations, both at the level of the observable and with respect to contributions from distinct spectroscopic processes.


Assuntos
Elétrons , Vibração , Eletrônica , Análise Espectral/métodos
4.
J Chem Phys ; 156(12): 124108, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35364894

RESUMO

Thermofield dynamics is an exactly correct formulation of quantum mechanics at finite temperature in which a wavefunction is governed by an effective temperature-dependent quantum Hamiltonian. The optimized mean trajectory (OMT) approximation allows the calculation of spectroscopic response functions from trajectories produced by the classical limit of a mapping Hamiltonian that includes physical nuclear degrees of freedom and other effective degrees of freedom representing discrete vibronic states. Here, we develop a thermofield OMT (TF-OMT) approach in which the OMT procedure is applied to a temperature-dependent classical Hamiltonian determined from the thermofield-transformed quantum mapping Hamiltonian. Initial conditions for bath nuclear degrees of freedom are sampled from a zero-temperature distribution. Calculations of two-dimensional electronic spectra and two-dimensional vibrational-electronic spectra are performed for models that include excitonically coupled electronic states. The TF-OMT calculations agree very closely with the corresponding OMT results, which, in turn, represent well benchmark calculations with the hierarchical equations of motion method.

5.
J Chem Phys ; 154(19): 194110, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34240897

RESUMO

Two-dimensional vibrational-electronic (2DVE) spectra probe the effects on vibronic spectra of initial vibrational excitation in an electronic ground state. The optimized mean trajectory (OMT) approximation is a semiclassical method for computing nonlinear spectra from response functions. Ensembles of classical trajectories are subject to semiclassical quantization conditions, with the radiation-matter interaction inducing discontinuous transitions. This approach has been previously applied to two-dimensional infrared and electronic spectra and is extended here to 2DVE spectra. For a system including excitonic coupling, vibronic coupling, and interaction of a chromophore vibration with a resonant environment, the OMT method is shown to well approximate exact quantum dynamics.

6.
J Chem Phys ; 153(20): 204103, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33261495

RESUMO

Exact quantum dynamics with a time-independent Hamiltonian in a discrete state space can be computed using classical mechanics through the classical Meyer-Miller-Stock-Thoss mapping Hamiltonian. In order to compute quantum response functions from classical dynamics, we extend this mapping to a quantum Hamiltonian with time-dependence arising from a classical field. This generalization requires attention to time-ordering in quantum and classical propagators. Quantum response theory with the original quantum Hamiltonian is equivalent to classical response theory with the classical mapping Hamiltonian. We elucidate the structure of classical response theory with the mapping Hamiltonian, thereby generating classical versions of the two-sided quantum density operator diagrams conventionally used to describe spectroscopic processes. This formal development can provide a foundation for new semiclassical approximations to spectroscopic observables for models in which classical nuclear degrees of freedom are introduced into a mapping Hamiltonian describing electronic states. Calculations of the temperature-dependence of two-dimensional electronic spectra for an exciton dimer using two semiclassical approaches are compared with benchmark calculations using the hierarchical equations of motion method.

7.
J Phys Chem B ; 124(44): 9913-9920, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108723

RESUMO

We extend the semiclassical optimized mean trajectory (OMT) procedure to calculate electronic spectra for a dimer with excitonic and vibronic interactions. The electronic part of the quantum Hamiltonian is expressed in the Miller-Meyer-Stock-Thoss form with one fictitious harmonic oscillator per electronic state, and the classical limit is taken, transforming a quantum Hamiltonian governing discrete states to an equivalent classical form. The ad hoc addition of classical nuclear degrees of freedom and electron-nuclear coupling yields a classical Hamiltonian with one degree of freedom per each electronic state and also per each nuclear motion. Semiclassical quantization is applied to this Hamiltonian through the OMT, originally developed to describe nuclear dynamics on a single potential surface and subsequently generalized to include electronic transitions. The accuracy and practicality of this trajectory-based method is assessed for an excitonically coupled dimer. The semiclassical one- and two-dimensional spectra are shown to compare well with quantum dynamical calculations performed with the hierarchical equations of motion method.

8.
J Chem Phys ; 150(16): 164114, 2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31042922

RESUMO

We present a semiclassical procedure for calculating nonlinear optical spectra from a quantum Hamiltonian with discrete electronic states. The purely electronic Hamiltonian for N states is first mapped to the associated Meyer-Miller Hamiltonian for N quantum harmonic oscillators. The classical limit is then taken, and classical nuclear degrees of freedom are introduced. Spectra are calculated by propagating the classical analogs of transition dipole operators subject to semiclassical quantization conditions on action variables. This method generalizes the optimized-mean-trajectory approach, originally developed for nonlinear vibrational spectroscopy and subsequently extended to vibronic spectroscopy, to models with multiple interacting electronic states. Calculations for two electronic excited states with displaced harmonic nuclear potentials illustrate the implementation of this approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA