Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 22(12): 1008-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26571108

RESUMO

Polyglutamine (polyGln) expansions in nine human proteins result in neurological diseases and induce the proteins' tendency to form ß-rich amyloid fibrils and intracellular deposits. Less well known are at least nine other human diseases caused by polyalanine (polyAla)-expansion mutations in different proteins. The mechanisms of how polyAla aggregates under physiological conditions remain unclear and controversial. We show here that aggregation of polyAla is mechanistically dissimilar to that of polyGln and hence does not exhibit amyloid kinetics. PolyAla assembled spontaneously into α-helical clusters with diverse oligomeric states. Such clustering was pervasive in cells irrespective of visible aggregate formation, and it disrupted the normal physiological oligomeric state of two human proteins natively containing polyAla: ARX and SOX3. This self-assembly pattern indicates that polyAla expansions chronically disrupt protein behavior by imposing a deranged oligomeric status.


Assuntos
Amiloide/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Agregação Patológica de Proteínas , Multimerização Proteica , Humanos , Estrutura Secundária de Proteína
2.
Eur J Cell Biol ; 94(2): 114-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25538032

RESUMO

Subcellular partitioning of creatine kinase contributes to the formation of patterns in intracellular ATP distribution and the fuelling of cellular processes with a high and sudden energy demand. We have previously shown that brain-type creatine kinase (CK-B) accumulates at the phagocytic cup in macrophages where it is involved in the compartmentalized generation of ATP for actin remodeling. Here, we report that CK-B catalytic activity also helps in the formation of protrusive ruffle structures which are actin-dependent and abundant on the surface of both unstimulated and LPS-activated macrophages. Recruitment of CK-B to these structures occurred transiently and inhibition of the enzyme's catalytic activity with cyclocreatine led to a general smoothening of surface morphology as visualized by scanning electron microscopy. Comparison of the dynamics of distribution of YFP-tagged CK-mutants and isoforms by live imaging revealed that amino acid residues in the C-terminal segment (aa positions 323-330) that forms one of the protein's two mobile loops are involved in partitioning over inner regions of the cytosol and nearby sites where membrane protrusions occur during induction of phagocytic cup formation. Although wt CK-B, muscle-type CK (CK-M), and a catalytically dead CK-B-E232Q mutant with intact loop region were normally recruited from the cytosolic pool, no dynamic transition to the phagocytic cup area was seen for the CK-homologue arginine kinase and a CK-B-D326A mutant protein. Bioinformatics analysis helped us to predict that conformational flexibility of the C-terminal loop, independent of conformational changes induced by substrate binding or catalytic activity, is likely involved in exposing the enzyme for binding at or near the sites of membrane protrusion formation.


Assuntos
Membrana Celular/metabolismo , Extensões da Superfície Celular/metabolismo , Creatina Quinase Forma BB/metabolismo , Macrófagos/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Extensões da Superfície Celular/efeitos dos fármacos , Biologia Computacional , Creatinina/análogos & derivados , Creatinina/farmacologia , Drosophila melanogaster , Inibidores Enzimáticos/farmacologia , Humanos , Macrófagos/ultraestrutura , Camundongos , Estrutura Terciária de Proteína
3.
J Biol Chem ; 289(10): 6669-6680, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24425868

RESUMO

Protein aggregation into intracellular inclusions is a key feature of many neurodegenerative disorders. A common theme has emerged that inappropriate self-aggregation of misfolded or mutant polypeptide sequences is detrimental to cell health. Yet protein quality control mechanisms may also deliberately cluster them together into distinct inclusion subtypes, including the insoluble protein deposit (IPOD) and the juxtanuclear quality control (JUNQ). Here we investigated how the intrinsic oligomeric state of three model systems of disease-relevant mutant protein and peptide sequences relates to the IPOD and JUNQ patterns of aggregation using sedimentation velocity analysis. Two of the models (polyalanine (37A) and superoxide dismutase 1 (SOD1) mutants A4V and G85R) accumulated into the same JUNQ-like inclusion whereas the other, polyglutamine (72Q), formed spatially distinct IPOD-like inclusions. Using flow cytometry pulse shape analysis (PulSA) to separate cells with inclusions from those without revealed the SOD1 mutants and 37A to have abruptly altered oligomeric states with respect to the nonaggregating forms, regardless of whether cells had inclusions or not, whereas 72Q was almost exclusively monomeric until inclusions formed. We propose that mutations leading to JUNQ inclusions induce a constitutively "misfolded" state exposing hydrophobic side chains that attract and ultimately overextend protein quality capacity, which leads to aggregation into JUNQ inclusions. Poly(Q) is not misfolded in this same sense due to universal polar side chains, but is highly prone to forming amyloid fibrils that we propose invoke a different engagement mechanism with quality control.


Assuntos
Peptídeos/química , Dobramento de Proteína , Superóxido Dismutase/química , Amiloide/química , Humanos , Corpos de Inclusão/química , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Peptídeos/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1
4.
Methods Mol Biol ; 1017: 59-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23719907

RESUMO

Defining the aggregation process of proteins formed by poly-amino acid repeats in cells remains a challenging task due to a lack of robust techniques for their isolation and quantitation. Sedimentation velocity methodology using fluorescence detected analytical ultracentrifugation is one approach that can offer significant insight into aggregation formation and kinetics. While this technique has traditionally been used with purified proteins, it is now possible for substantial information to be collected with studies using cell lysates expressing a GFP-tagged protein of interest. In this chapter, we describe protocols for sample preparation and setting up the fluorescence detection system in an analytical ultracentrifuge to perform sedimentation velocity experiments on cell lysates containing aggregates formed by poly-amino acid repeat proteins.


Assuntos
Fluorescência , Proteínas de Fluorescência Verde/química , Peptídeos/química , Proteínas Recombinantes de Fusão/química , Animais , Linhagem Celular , Centrifugação com Gradiente de Concentração/métodos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
5.
Nat Methods ; 9(5): 467-70, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22426490

RESUMO

We applied pulse-shape analysis (PulSA) to monitor protein localization changes in mammalian cells by flow cytometry. PulSA enabled high-throughput tracking of protein aggregation, translocation from the cytoplasm to the nucleus and trafficking from the plasma membrane to the Golgi as well as stress-granule formation. Combining PulSA with tetracysteine-based oligomer sensors in a cell model of Huntington's disease enabled further separation of cells enriched with monomers, oligomers and inclusion bodies.


Assuntos
Citometria de Fluxo/métodos , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Complexo de Golgi/metabolismo , Humanos , Proteína Huntingtina , Corpos de Inclusão/metabolismo , Transporte Proteico
6.
Adv Exp Med Biol ; 769: 125-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23560308

RESUMO

Polyglutamine (polyQ)-expansions in different proteins cause nine neurodegenerative diseases. While polyQ aggregation is a key pathological hallmark of these diseases, how aggregation relates to pathogenesis remains contentious. In this chapter, we review what is known about the aggregation process and how cells respond and interact with the polyQ-expanded proteins. We cover detailed biophysical and structural studies to uncover the intrinsic features of polyQ aggregates and concomitant effects in the cellular environment. We also examine the functional consequences ofpolyQ aggregation and how cells may attempt to intervene and guide the aggregation process.


Assuntos
Doença de Huntington/metabolismo , Peptídeos/química , Deficiências na Proteostase/metabolismo , Microambiente Celular , Humanos , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Mutação , Peptídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Deficiências na Proteostase/genética , Deficiências na Proteostase/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...