Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Catal Sci Technol ; 14(5): 1138-1147, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38449728

RESUMO

Considering the alarming scenario of climate change, CO2 hydrogenation to methanol is considered a key process for phasing out fossil fuels by means of CO2 utilization. In this context, MoS2 catalysts have recently shown to be promising catalysts for this reaction, especially in the presence of abundant basal-plane sulfur vacancies and due to synergistic mechanisms with other phases. In this work, Mn-promoted MoS2 prepared by a hydrothermal method presents considerable selectivity for CO2 hydrogenation to methanol in comparison with pure MoS2 and other promoters such as K and Co. Interestingly, if CO is used as a carbon source for the reaction, methanol production is remarkably lower, which suggests the absence of a CO intermediate during CO2 hydrogenation to methanol. After optimization of synthesis parameters, a methanol selectivity of 64% is achieved at a CO2 conversion of 2.8% under 180 °C. According to material characterization by X-ray Diffraction and X-ray Absorption, the Mn promoter is present mainly in the form of MnO and MnCO3 phases, with the latter undergoing convertion to MnO upon H2 pretreatment. However, following exposure to reaction conditions, X-ray photoelectron spectroscopy suggests that higher oxidation states of Mn may be present at the surface, suggesting that the improved catalytic activity for CO2 hydrogenation to methanol arises from a synergy between MoS2 and MnOx at the catalyst surface.

2.
JACS Au ; 3(8): 2314-2322, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37654588

RESUMO

The synthesis of well-defined materials as model systems for catalysis and related fields is an important pillar in the understanding of catalytic processes at a molecular level. Various approaches employing organometallic precursors have been developed and established to make monodispersed supported nanoparticles, nanocrystals, and films. Using rational design principles, a new family of precursors based on group 10 metals suitable for the generation of small and monodispersed nanoparticles on metal oxides has been developed. Particle formation on SiO2 and Al2O3 supports is demonstrated, as well as the potential in the synthesis of bimetallic catalyst materials, exemplified by a PdGa/SiO2 system capable of hydrogenation of CO2 to methanol. In addition to surface organometallic chemistry (SOMC), it is envisioned that these precursors could also be employed in related applications, such as atomic layer deposition, due to their inherent volatility and relative thermal stability.

3.
J Am Chem Soc ; 145(23): 12651-12662, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256723

RESUMO

The olefin metathesis activity of silica-supported molybdenum oxides depends strongly on metal loading and preparation conditions, indicating that the nature and/or amounts of the active sites vary across compositionally similar catalysts. This is illustrated by comparing Mo-based (pre)catalysts prepared by impregnation (2.5-15.6 wt % Mo) and a model material (2.3 wt % Mo) synthesized via surface organometallic chemistry (SOMC). Analyses of FTIR, UV-vis, and Mo K-edge X-ray absorption spectra show that these (pre)catalysts are composed predominantly of similar isolated Mo dioxo sites. However, they exhibit different reaction properties in both liquid and gas-phase olefin metathesis with the SOMC-derived catalyst outperforming a classical catalyst of a similar Mo loading by ×1.5-2.0. Notably, solid-state 95Mo NMR analyses leveraging state-of-the-art high-field (28.2 T) measurement conditions resolve four distinct surface Mo dioxo sites with distributions that depend on the (pre)catalyst preparation methods. The intensity of a specific deshielded 95Mo NMR signal, which is most prominent in the SOMC-derived catalyst, is linked to reducibility and catalytic activity. First-principles calculations show that 95Mo NMR parameters directly manifest the local strain and coordination environment: acute (SiO-Mo(O)2-OSi) angles and low coordination numbers at Mo lead to highly deshielded 95Mo chemical shifts and small quadrupolar coupling constants, respectively. Natural chemical shift analyses relate the 95Mo NMR signature of strained species to low LUMO energies, which is consistent with their high reducibility and corresponding reactivity. The 95Mo chemical shifts of supported Mo dioxo sites are thus linked to their specific electronic structures, providing a powerful descriptor for their propensity toward reduction and formation of active sites.

4.
Chem Mater ; 35(6): 2371-2380, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008405

RESUMO

Cu2S is a promising solar energy conversion material due to its suitable optical properties, high elemental earth abundance, and nontoxicity. In addition to the challenge of multiple stable secondary phases, the short minority carrier diffusion length poses an obstacle to its practical application. This work addresses the issue by synthesizing nanostructured Cu2S thin films, which enables increased charge carrier collection. A simple solution-processing method involving the preparation of CuCl and CuCl2 molecular inks in a thiol-amine solvent mixture followed by spin coating and low-temperature annealing was used to obtain phase-pure nanostructured (nanoplate and nanoparticle) Cu2S thin films. The photocathode based on the nanoplate Cu2S (FTO/Au/Cu2S/CdS/TiO2/RuO x ) reveals enhanced charge carrier collection and improved photoelectrochemical water-splitting performance compared to the photocathode based on the non-nanostructured Cu2S thin film reported previously. A photocurrent density of 3.0 mA cm-2 at -0.2 versus a reversible hydrogen electrode (V RHE) with only 100 nm thickness of a nanoplate Cu2S layer and an onset potential of 0.43 V RHE were obtained. This work provides a simple, cost-effective, and high-throughput method to prepare phase-pure nanostructured Cu2S thin films for scalable solar hydrogen production.

5.
Small ; 19(29): e2205885, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36950754

RESUMO

Platinum is one of the best-performing catalysts for the hydrogen evolution reaction (HER). However, high cost and scarcity severely hinder the large-scale application of Pt electrocatalysts. Constructing highly dispersed ultrasmall Platinum entities is thereby a very effective strategy to increase Pt utilization and mass activities, and reduce costs. Herein, highly dispersed Pt entities composed of a mixture of Pt single atoms, clusters, and nanoparticles are synthesized on mesoporous N-doped carbon nanospheres. The presence of Pt single atoms, clusters, and nanoparticles is demonstrated by combining among others aberration-corrected annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, and electrochemical CO stripping. The best catalyst exhibits excellent geometric and Pt HER mass activity, respectively ≈4 and 26 times higher than that of a commercial Pt/C reference and a Pt catalyst supported on nonporous N-doped carbon nanofibers with similar Pt loadings. Noteworthily, after optimization of the geometrical Pt electrode loading, the best catalyst exhibits ultrahigh Pt and catalyst mass activities (56 ± 3 A mg-1 Pt and 11.7 ± 0.6 A mg-1 Cat at -50 mV vs. reversible hydrogen electrode), which are respectively ≈1.5 and 58 times higher than the highest Pt and catalyst mass activities for Pt single-atom and cluster-based catalysts reported so far.

6.
J Chem Phys ; 155(16): 161102, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34717367

RESUMO

Replacement of protecting ligands of gold nanoclusters by ligand exchange has become an established post-synthetic tool for selectively modifying the nanoclusters' properties. Several Au nanoclusters are known to additionally undergo size transformations upon ligand exchange, enabling access to cluster structures that are difficult to obtain by direct synthesis. This work reports on the selective size transformation of Au15(SG)13 (SG: glutathione) nanoclusters to Au16(2-PET)14 (2-PET: 2-phenylethanethiol) nanoclusters through a two-phase ligand exchange process at room temperature. Among several parameters evaluated, the addition of a large excess of exchange thiol (2-PET) to the organic phase was identified as the key factor for the structure conversion. After exchange, the nature of the clusters was determined by UV-vis, electrospray ionization-time of flight mass spectrometry, attenuated total reflection-Fourier transform infrared, and extended x-ray absorption fine-structure spectroscopy. The obtained Au16(2-PET)14 clusters proved to be exceptionally stable in solution, showing only slightly diminished UV-vis absorption features after 3 days, even when exposed to an excess of thiol ligands.

7.
ACS Catal ; 10(11): 6144-6148, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32551181

RESUMO

Atomically precise thiolate protected Au nanoclusters Au38(SC2H4Ph)24 on CeO2 were used for in-situ (operando) extended X-ray absorption fine structure/diffuse reflectance infrared fourier transform spectroscopy and ex situ scanning transmission electron microscopy-high-angle annular dark-field imaging/X-ray photoelectron spectroscopy studies monitoring cluster structure changes induced by activation (ligand removal) and CO oxidation. Oxidative pretreatment at 150 °C "collapsed" the clusters' ligand shell, oxidizing the hydrocarbon backbone, but the S remaining on Au acted as poison. Oxidation at 250 °C produced bare Au surfaces by removing S which migrated to the support (forming Au+-S), leading to highest activity. During reaction, structural changes occurred via CO-induced Au and O-induced S migration to the support. The results reveal the dynamics of nanocluster catalysts and the underlying cluster chemistry.

8.
Phys Chem Chem Phys ; 20(7): 5312-5318, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29406541

RESUMO

The fast metal exchange reaction between Au38 and AgxAu38-x nanoclusters in solution at -20 °C has been studied by in situ X-ray absorption spectroscopy (time resolved quick XAFS) in transmission mode. A cell was designed for this purpose consisting of a cooling system, remote injection and mixing devices. The capability of the set-up is demonstrated for second and minute time scale measurements of the metal exchange reaction upon mixing Au38/toluene and AgxAu38-x/toluene solutions at both Ag K-edge and Au L3-edge. It has been proposed that the exchange of gold and silver atoms between the clusters occurs via the SR(-M-SR)n (n = 1, 2; M = Au, Ag) staple units in the surface of the reacting clusters during their collision. However, at no point during the reaction (before, during, after) evidence is found for cationic silver atoms within the staples. This means that either the exchange occurs directly between the cores of the involved clusters or the residence time of the silver atoms in the staples is very short in a mechanism involving the metal exchange within the staples.

9.
ChemCatChem ; 10(23): 5372-5376, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30713589

RESUMO

Thiolate protected metal clusters are valuable precursors for the design of tailored nanosized catalysts. Their performance can be tuned precisely at atomic level, e. g. by the configuration/type of ligands or by partial/complete removal of the ligand shell through controlled pre-treatment steps. However, the interaction between the ligand shell and the oxide support, as well as ligand removal by oxidative pre-treatment, are still poorly understood. Typically, it was assumed that the thiolate ligands are simply converted into SO2, CO2 and H2O. Herein, we report the first detailed observation of sulfur ligand migration from Au to the oxide support upon deposition and oxidative pre-treatment, employing mainly S K-edge XANES. Consequently, thiolate ligand migration not only produces clean Au cluster surfaces but also the surrounding oxide support is modified by sulfur-containing species, with pronounced effects on catalytic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...