Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771219

RESUMO

Tests of phenotypic convergence can provide evidence of adaptive evolution, and the popularity of such studies has grown in recent years due to the development of novel, quantitative methods for identifying and measuring convergence. These methods include the commonly applied C1-C4 measures of Stayton (2015), which measure morphological distances between lineages, and Ornstein-Uhlenbeck (OU) model-fitting analyses, which test whether lineages converged on shared adaptive peaks. We test the performance of C-measures and other convergence measures under various evolutionary scenarios and reveal a critical issue with C-measures: they often misidentify divergent lineages as convergent. We address this issue by developing novel convergence measures- Ct1-Ct4-measures -that calculate distances between lineages at specific points in time, minimizing the possibility of misidentifying divergent taxa as convergent. Ct-measures are most appropriate when focal lineages are of the same or similar geologic ages (e.g., extant taxa), meaning that the lineages' evolutionary histories include considerable overlap in time. Beyond C-measures, we find that all convergence measures are influenced by the position of focal taxa in phenotypic space, with morphological outliers often statistically more likely to be measured as strongly convergent. Further, we mimic scenarios in which researchers assess convergence using OU models with a priori regime assignments (e.g., classifying taxa by ecological traits) and find that multiple-regime OU models with phenotypically divergent lineages assigned to a shared selective regime often outperform simpler models. This highlights that model support for these multiple-regime OU models should not be assumed to always reflect convergence among focal lineages of a shared regime. Our new Ct1-Ct4-measures provide researchers with an improved comparative tool, but we emphasize that all available convergence measures are imperfect, and researchers should recognize the limitations of these methods and use multiple lines of evidence to test convergence hypotheses.

2.
Am J Primatol ; 86(6): e23616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462743

RESUMO

Parallel laser photogrammetry (PLP), which consists of attaching two or three parallel laser beams at a known inter-beam distance to a camera, can be used to collect morphological measurements of organisms noninvasively. The lasers project onto the photo being taken, and because the inter-beam distance is known, they act as a scale for image analysis programs like ImageJ. Traditionally, this method has been used to measure larger morphological traits (e.g., limb length, crown-rump length) to serve as proxies for overall body size, whereas applications to smaller anatomical features remain limited. To that end, we used PLP to measure the testes of 18 free-living mantled howler monkeys (Alouatta palliata) at La Selva Biological Station, Costa Rica. We tested whether this method could reliably measure this relatively small and globular morphology, and whether it could detect differences among individuals. We tested reliability in three ways: within-photo (coefficient of variation [CV] = 4.7%), between-photo (CV = 5.5%), and interobserver (intraclass correlation = 0.92). We found an average volume of 36.2 cm3 and a range of 16.4-54.4 cm3, indicating variation in testes size between individuals. Furthermore, these sizes are consistent with a previous study that collected measurements by hand, suggesting that PLP is a useful method for making noninvasive measurements of testes.


Assuntos
Alouatta , Lasers , Fotogrametria , Testículo , Animais , Alouatta/anatomia & histologia , Alouatta/fisiologia , Masculino , Testículo/anatomia & histologia , Fotogrametria/métodos , Costa Rica , Reprodutibilidade dos Testes
3.
Proc Natl Acad Sci U S A ; 120(7): e2201947120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745789

RESUMO

We are in a modern biodiversity crisis that will restructure community compositions and ecological functions globally. Large mammals, important contributors to ecosystem function, have been affected directly by purposeful extermination and indirectly by climate and land-use changes, yet functional turnover is rarely assessed on a global scale using metrics based on functional traits. Using ecometrics, the study of functional trait distributions and functional turnover, we examine the relationship between vegetation cover and locomotor traits for artiodactyl and carnivoran communities. We show that the ability to detect a functional relationship is strengthened when locomotor traits of both primary consumers (artiodactyls, n = 157 species) and secondary consumers (carnivorans, n = 138 species) are combined into one trophically integrated ecometric model. Overall, locomotor traits of 81% of communities accurately estimate vegetation cover, establishing the advantage of trophically integrated ecometric models over single-group models (58 to 65% correct). We develop an innovative approach within the ecometrics framework, using ecometric anomalies to evaluate mismatches in model estimates and observed values and provide more nuance for understanding relationships between functional traits and vegetation cover. We apply our integrated model to five paleontological sites to illustrate mismatches in the past and today and to demonstrate the utility of the model for paleovegetation interpretations. Observed changes in community traits and their associated vegetations across space and over time demonstrate the strong, rapid effect of environmental filtering on community traits. Ultimately, our trophically integrated ecometric model captures the cascading interactions between taxa, traits, and changing environments.


Assuntos
Biodiversidade , Ecossistema , Animais , Mamíferos , Clima
4.
Am J Biol Anthropol ; 180(4): 768-776, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36789740

RESUMO

OBJECTIVES: Two decades ago, Rilling and Seligman, hereafter abbreviated to RAS Study, suggested modern humans had relatively larger temporal lobes for brain size compared to other anthropoids. Despite many subsequent studies drawing conclusions about the evolutionary implications for the emergence of unique cerebral specializations in Homo sapiens, no re-assessment has occurred using updated methodologies. METHODS: We reassessed the association between right temporal lobe volume (TLV) and right hemisphere volume (HV) in the anthropoid brain. In a sample compiled de novo by us, T1-weighted in vivo Magnetic Resonance Imaging (MRI) scans of 11 extant anthropoid species were calculated by-voxel from the MRI and the raw data from RAS Study directly compared to our sample. Phylogenetic Generalized Least-Squares (PGLS) regression and trait-mapping using Blomberg's K (kappa) tested the correlation between HV and TLV accounting for anthropoid phylogeny, while bootstrapped PGLS regressions tested difference in slopes and intercepts between monkey and ape subsamples. RESULTS: PGLS regressions indicated statistically significant correlations (r2 < 0.99; p ≤ 0.0001) between TLV and HV with moderate influence from phylogeny (K ≤ 0.42). Bootstrapped PGLS regression did not show statistically significant differences in slopes between monkeys and apes but did for intercepts. In our sample, human TLV was not larger than expected for anthropoids. DISCUSSION: Updated imaging, increased sample size and advanced statistical analyses did not find statistically significant results that modern humans possessed a disproportionately large temporal lobe volume compared to the general anthropoid trend. This has important implications for human and non-human primate brain evolution.


Assuntos
Evolução Biológica , Hominidae , Animais , Humanos , Filogenia , Haplorrinos , Primatas , Lobo Temporal/diagnóstico por imagem
5.
Integr Comp Biol ; 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35660875

RESUMO

A boom in technological advancements over the last two decades has driven a surge in both the diversity and power of analytical tools available to biomechanical and functional morphology research. However, in order to adequately investigate each of these dense datasets, one must often consider only one functional narrative at a time. There is more to each organism than any one of these form-function relationships. Joint performance landscapes determined by maximum likelihood are a valuable tool that can be used to synthesize our understanding of these multiple functional hypotheses to further explore an organism's ecology. We present an example framework for applying these tools to such a problem using the morphological transition of ammonoids from the Middle Triassic to the Early Jurassic. Across this time interval, morphospace occupation shifts from a broad occupation across Westermann Morphospace to a dense occupation of a region emphasizing an exposed umbilicus and modest frontal profile. The hydrodynamic capacities and limitations of the shell have seen intense scrutiny as a likely explanation of this transition. However, conflicting interpretations of hydrodynamic performance remain despite this scrutiny, with scant offerings of alternative explanations. Our analysis finds that hydrodynamic measures of performance do little to explain the shift in morphological occupation, highlighting a need for a more robust investigation of alternative functional hypotheses that are often intellectually set aside. With this we show a framework for consolidating the current understanding of the form-function relationships in an organism, and assess when they are insufficiently characterizing the dynamics those data are being used to explain. We aim to encourage the broader adoption of this framework and these ideas as a foundation to bring the field close to comprehensive synthesis and reconstruction of organisms.

6.
Syst Biol ; 71(4): 810-822, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34735008

RESUMO

This article investigates a form of rank deficiency in phenotypic covariance matrices derived from geometric morphometric data, and its impact on measures of phenotypic integration. We first define a type of rank deficiency based on information theory then demonstrate that this deficiency impairs the performance of phenotypic integration metrics in a model system. Lastly, we propose methods to treat for this information rank deficiency. Our first goal is to establish how the rank of a typical geometric morphometric covariance matrix relates to the information entropy of its eigenvalue spectrum. This requires clear definitions of matrix rank, of which we define three: the full matrix rank (equal to the number of input variables), the mathematical rank (the number of nonzero eigenvalues), and the information rank or "effective rank" (equal to the number of nonredundant eigenvalues). We demonstrate that effective rank deficiency arises from a combination of methodological factors-Generalized Procrustes analysis, use of the correlation matrix, and insufficient sample size-as well as phenotypic covariance. Secondly, we use dire wolf jaws to document how differences in effective rank deficiency bias two metrics used to measure phenotypic integration. The eigenvalue variance characterizes the integration change incorrectly, and the standardized generalized variance lacks the sensitivity needed to detect subtle changes in integration. Both metrics are impacted by the inclusion of many small, but nonzero, eigenvalues arising from a lack of information in the covariance matrix, a problem that usually becomes more pronounced as the number of landmarks increases. We propose a new metric for phenotypic integration that combines the standardized generalized variance with information entropy. This metric is equivalent to the standardized generalized variance but calculated only from those eigenvalues that carry nonredundant information. It is the standardized generalized variance scaled to the effective rank of the eigenvalue spectrum. We demonstrate that this metric successfully detects the shift of integration in our dire wolf sample. Our third goal is to generalize the new metric to compare data sets with different sample sizes and numbers of variables. We develop a standardization for matrix information based on data permutation then demonstrate that Smilodon jaws are more integrated than dire wolf jaws. Finally, we describe how our information entropy-based measure allows phenotypic integration to be compared in dense semilandmark data sets without bias, allowing characterization of the information content of any given shape, a quantity we term "latent dispersion". [Canis dirus; Dire wolf; effective dispersion; effective rank; geometric morphometrics; information entropy; latent dispersion; modularity and integration; phenotypic integration; relative dispersion.].


Assuntos
Modelos Biológicos , Viés , Filogenia , Tamanho da Amostra
7.
Evolution ; 75(1): 56-72, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226114

RESUMO

The kinetic skull is a key innovation that allowed snakes to capture, manipulate, and swallow prey exclusively using their heads using the coordinated movement of eight bones. Despite these unique feeding behaviors, patterns of evolutionary integration and modularity within the feeding bones of snakes in a phylogenetic framework have yet to be addressed. Here, we use a dataset of 60 µCT-scanned skulls and high-density geometric morphometric methods to address the origin and patterns of variation and integration in the feeding bones of aquatic-foraging snakes. By comparing alternate superimposition protocols allowing us to analyze the entire kinetic feeding system simultaneously, we find that the feeding bones are highly integrated, driven predominantly by functional selective pressures. The most supported pattern of modularity contains four modules, each associated with distinct functional roles: the mandible, the palatopterygoid arch, the maxilla, and the suspensorium. Further, the morphological disparity of each bone is not linked to its magnitude of integration, indicating that integration within the feeding system does not strongly constrain morphological evolution, and that adequate biomechanical solutions to a wide range of feeding ecologies and behaviors are readily evolvable within the constraint due to integration in the snake feeding system.


Assuntos
Evolução Biológica , Comportamento Alimentar/fisiologia , Crânio/anatomia & histologia , Serpentes/anatomia & histologia , Animais , Organismos Aquáticos/fisiologia , Biometria , Crânio/fisiologia , Serpentes/fisiologia
8.
Integr Comp Biol ; 60(5): 1268-1282, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32592482

RESUMO

Functional tradeoffs are often viewed as constraints on phenotypic evolution, but they can also facilitate evolution across the suboptimal valleys separating performance peaks. I explore this process by reviewing a previously published model of how disruptive selection from competing functional demands defines an intermediate performance optimum for morphological systems that cannot simultaneously be optimized for all of the functional roles they must play. Because of the inherent tradeoffs in such a system, its optimal morphology in any particular environmental context will usually be intermediate between the performance peaks of the competing functions. The proportional contribution of each functional demand can be estimated by maximum likelihood from empirically observed morphologies, including complex ones measured with multivariate geometric morphometrics, using this model. The resulting tradeoff weight can be mapped onto a phylogenetic tree to study how the performance optimum has shifted across a functional landscape circumscribed by the function-specific performance peaks. This model of tradeoff evolution is sharply different from one in which a multipeak Ornstein-Uhlenbeck (OU) model is applied to a set of morphologies and a phylogenetic tree to estimate how many separate performance optima exist. The multi-peak OU approach assumes that each branch is pushed toward one of two or more performance peaks that exist simultaneously and are separated by valleys of poor performance, whereas the model discussed here assumes that each branch tracks a single optimal performance peak that wanders through morphospace as the balance of functional demands shifts. That the movements of this net performance peak emerge from changing frequencies of selection events from opposing functional demands are illustrated using a series of computational simulations. These simulations show how functional tradeoffs can carry evolution across putative performance valleys: even though intermediate morphologies may not perform optimally for any one function, they may represent the optimal solution in any environment in which an organism experiences competing functional demands.


Assuntos
Evolução Biológica , Meio Ambiente , Modelos Genéticos , Animais , Funções Verossimilhança , Fenótipo , Filogenia
9.
Am J Phys Anthropol ; 172(4): 698-713, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32237235

RESUMO

OBJECTIVES: We investigate the suitability of middle cranial fossa (MCF) size as a proxy for temporal lobe volume (TLV), examining the strength of the association between TLV and MCF metrics and assess the reliability predicting TLV in fossil anthropoids. The temporal lobe of the primate brain is a multimodal association cortex involved in long-term memory, auditory, and visual processing with unique specializations in modern humans for language comprehension. The MCF is the bony counterpart for the temporal lobe providing inferences for fossil hominin temporal lobe evolution. We now investigate whether the MCF is a suitable proxy for the temporal lobe. METHODS: A sample of 23 anthropoid species (n = 232, including 13 fossil species) from computed tomography (CT) scans of ex vivo crania and magnetic resonance imaging (MRI) of the in vivo brain were generated into three-dimensional (3D) virtual models. Seven linear metrics were digitally measured on the right MCF with right TLV calculated from in vivo MRI. RESULTS: Regression analyses produced statistically significant correlations between TLV and all MCF metrics (r ≥ 0.85; p ≤ 0.0009) with TLV predictions within ±1 standard error and three MCF metrics (posterior-width, mid-length, and mid-width) the most reliable predictors of TLV with only one metric weakly associated with TLV. DISCUSSION: These findings indicate a strong association between the MCF and TLV, provide reliable predictors of fossil TLV that were previously unattainable, allow the inclusion of fragmentary fossil material, and enable inferences into the emergence of modern human temporal lobe morphology.


Assuntos
Fossa Craniana Média/anatomia & histologia , Fósseis , Haplorrinos/anatomia & histologia , Lobo Temporal/anatomia & histologia , Anatomia Comparada , Animais , Antropologia Física , Encéfalo/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética , Modelos Estatísticos , Neuroanatomia
10.
Integr Comp Biol ; 59(3): 669-683, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31243431

RESUMO

The field of comparative morphology has entered a new phase with the rapid generation of high-resolution three-dimensional (3D) data. With freely available 3D data of thousands of species, methods for quantifying morphology that harness this rich phenotypic information are quickly emerging. Among these techniques, high-density geometric morphometric approaches provide a powerful and versatile framework to robustly characterize shape and phenotypic integration, the covariances among morphological traits. These methods are particularly useful for analyses of complex structures and across disparate taxa, which may share few landmarks of unambiguous homology. However, high-density geometric morphometrics also brings challenges, for example, with statistical, but not biological, covariances imposed by placement and sliding of semilandmarks and registration methods such as Procrustes superimposition. Here, we present simulations and case studies of high-density datasets for squamates, birds, and caecilians that exemplify the promise and challenges of high-dimensional analyses of phenotypic integration and modularity. We assess: (1) the relative merits of "big" high-density geometric morphometrics data over traditional shape data; (2) the impact of Procrustes superimposition on analyses of integration and modularity; and (3) differences in patterns of integration between analyses using high-density geometric morphometrics and those using discrete landmarks. We demonstrate that for many skull regions, 20-30 landmarks and/or semilandmarks are needed to accurately characterize their shape variation, and landmark-only analyses do a particularly poor job of capturing shape variation in vault and rostrum bones. Procrustes superimposition can mask modularity, especially when landmarks covary in parallel directions, but this effect decreases with more biologically complex covariance patterns. The directional effect of landmark variation on the position of the centroid affects recovery of covariance patterns more than landmark number does. Landmark-only and landmark-plus-sliding-semilandmark analyses of integration are generally congruent in overall pattern of integration, but landmark-only analyses tend to show higher integration between adjacent bones, especially when landmarks placed on the sutures between bones introduces a boundary bias. Allometry may be a stronger influence on patterns of integration in landmark-only analyses, which show stronger integration prior to removal of allometric effects compared to analyses including semilandmarks. High-density geometric morphometrics has its challenges and drawbacks, but our analyses of simulated and empirical datasets demonstrate that these potential issues are unlikely to obscure genuine biological signal. Rather, high-density geometric morphometric data exceed traditional landmark-based methods in characterization of morphology and allow more nuanced comparisons across disparate taxa. Combined with the rapid increases in 3D data availability, high-density morphometric approaches have immense potential to propel a new class of studies of comparative morphology and phenotypic integration.


Assuntos
Anfíbios/anatomia & histologia , Evolução Biológica , Aves/anatomia & histologia , Répteis/anatomia & histologia , Crânio/anatomia & histologia , Pontos de Referência Anatômicos/anatomia & histologia , Animais , Modelos Anatômicos , Fenótipo
11.
Isotopes Environ Health Stud ; 55(2): 129-149, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30793970

RESUMO

2H/1H ratios in animal biomass reflect isotopic input from food and water. A 10-week controlled laboratory study raised 48 mice divided in two generations (8 mothers Mus musculus and their offspring). The mice were divided into four groups based on the combination of 2H, 13C, 15N-enriched and non-enriched food and water. Glycine, the most common amino acid in bone collagen, carried the 2H, 13C, 15N-isotopic spike in food. ANOVA data analysis indicated that hydrogen in food accounted for ∼81 % of the hydrogen isotope inventory in collagen whereas drinking water hydrogen contributed ∼17 %. Air humidity contributed an unspecified amount. Additionally, we monitored 13C and 15N-enrichment in bone collagen and found strong linear correlations with the 2H-enrichment. The experiments with food and water indicate two biosynthetic pathways, namely (i) de novo creation of non-essential amino acids using hydrogen from water, and (ii) the integration of essential and non-essential amino acids from food. The lower rate of isotope uptake in mothers' collagen relative to their offspring indicates incomplete bone collagen turnover after ten weeks. The variance of hydrogen stable isotope ratios within the same cohort may limit its usefulness as a single sample proxy for archaeological or palaeoenvironmental research.


Assuntos
Ração Animal/análise , Osso e Ossos/química , Isótopos de Carbono/análise , Colágeno/química , Água Potável/análise , Hidrogênio/análise , Isótopos de Nitrogênio/análise , Aminoácidos/química , Animais , Camundongos
12.
Nat Commun ; 9(1): 4626, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401815

RESUMO

In Table 1 of this article, the descriptions of landmarks 14, 15, and 36 are incorrect. Landmarks 14 and 36 should read "Posterior extremity of occipital condyle along margin of foramen magnum" and landmark 15 should read "Opisthion". A correct version of Table 2 appears in the Author Correction associated with this article; the error has not been fixed in the original article.

13.
Science ; 362(6410): 25-26, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287646

Assuntos
Marsupiais , Animais
14.
Science ; 355(6325)2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28183912

RESUMO

Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Extinção Biológica , Animais , Mudança Climática , Espécies em Perigo de Extinção , Poluição Ambiental , Gorilla gorilla , Humanos , Espécies Introduzidas , Políticas , Dinâmica Populacional
15.
Proc Natl Acad Sci U S A ; 114(3): 468-473, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049819

RESUMO

The large brain and small postcanine teeth of modern humans are among our most distinctive features, and trends in their evolution are well studied within the hominin clade. Classic accounts hypothesize that larger brains and smaller teeth coevolved because behavioral changes associated with increased brain size allowed a subsequent dental reduction. However, recent studies have found mismatches between trends in brain enlargement and posterior tooth size reduction in some hominin species. We use a multiple-variance Brownian motion approach in association with evolutionary simulations to measure the tempo and mode of the evolution of endocranial and dental size and shape within the hominin clade. We show that hominin postcanine teeth have evolved at a relatively consistent neutral rate, whereas brain size evolved at comparatively more heterogeneous rates that cannot be explained by a neutral model, with rapid pulses in the branches leading to later Homo species. Brain reorganization shows evidence of elevated rates only much later in hominin evolution, suggesting that fast-evolving traits such as the acquisition of a globular shape may be the result of direct or indirect selection for functional or structural traits typical of modern humans.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Hominidae/anatomia & histologia , Dente/anatomia & histologia , Animais , Simulação por Computador , Fósseis , Hominidae/classificação , Humanos , Modelos Biológicos , Análise Multivariada , Tamanho do Órgão , Paleodontologia , Paleontologia , Filogenia
17.
Am Nat ; 188(2): 133-48, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27420780

RESUMO

Fossils and other paleontological information can improve phylogenetic comparative method estimates of phenotypic evolution and generate hypotheses related to species diversification. Here, we use fossil information to calibrate ancestral reconstructions of suitable climate for Sceloporus lizards in North America. Integrating data from the fossil record, general circulation models of paleoclimate during the Miocene, climate envelope modeling, and phylogenetic comparative methods provides a geographically and temporally explicit species distribution model of Sceloporus-suitable habitat through time. We provide evidence to support the historic biogeographic hypothesis of Sceloporus diversification in warm North American deserts and suggest a relatively recent Sceloporus invasion into Mexico around 6 Ma. We use a physiological model to map extinction risk. We suggest that the number of hours of restriction to a thermal refuge limited Sceloporus from inhabiting Mexico until the climate cooled enough to provide suitable habitat at approximately 6 Ma. If the future climate returns to the hotter climates of the past, Mexico, the place of highest modern Sceloporus richness, will no longer provide suitable habitats for Sceloporus to survive and reproduce.


Assuntos
Clima , Fósseis , Lagartos/classificação , Filogeografia , Animais , Evolução Biológica , Mudança Climática , Ecossistema , Lagartos/fisiologia , México
18.
Integr Comp Biol ; 56(3): 404-15, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27260858

RESUMO

Developmental constraints can have significant influence on the magnitude and direction of evolutionary change, and many studies have demonstrated that these effects are manifested on macroevolutionary scales. Phenotypic integration, or the strong interactions among traits, has been similarly invoked as a major influence on morphological variation, and many studies have demonstrated that trait integration changes through ontogeny, in many cases decreasing with age. Here, we unify these perspectives in a case study of the ontogeny of the mammalian cranium, focusing on a comparison between marsupials and placentals. Marsupials are born at an extremely altricial state, requiring, in most cases, the use of the forelimbs to climb to the pouch, and, in all cases, an extended period of continuous suckling, during which most of their development occurs. Previous work has shown that marsupials are less disparate in adult cranial form than are placentals, particularly in the oral apparatus, and in forelimb ontogeny and adult morphology, presumably due to functional selection pressures on these two systems during early postnatal development. Using phenotypic trajectory analysis to quantify prenatal and early postnatal cranial ontogeny in 10 species of therian mammals, we demonstrate that this pattern of limited variation is also apparent in the development of the oral apparatus of marsupials, relative to placentals, but not in the skull more generally. Combined with the observation that marsupials show extremely high integration of the oral apparatus in early postnatal ontogeny, while other cranial regions show similar levels of integration to that observed in placentals, we suggest that high integration may compound the effects of the functional constraints for continuous suckling to ultimately limit the ontogenetic and adult disparity of the marsupial oral apparatus throughout their evolutionary history.


Assuntos
Evolução Biológica , Marsupiais/anatomia & histologia , Marsupiais/crescimento & desenvolvimento , Boca/anatomia & histologia , Boca/crescimento & desenvolvimento , Animais
19.
Odontology ; 103(2): 117-25, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25986362

RESUMO

Our understanding of the evolution of the dentition has been transformed by advances in the developmental biology, genetics, and functional morphology of teeth, as well as the methods available for studying tooth form and function. The hierarchical complexity of dental developmental genetics combined with dynamic effects of cells and tissues during development allow for substantial, rapid, and potentially non-linear evolutionary changes. Studies of selection on tooth function in the wild and evolutionary functional comparisons both suggest that tooth function and adaptation to diets are the most important factors guiding the evolution of teeth, yet selection against random changes that produce malocclusions (selectional drift) may be an equally important factor in groups with tribosphenic dentitions. These advances are critically reviewed here.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Odontogênese/genética , Adaptação Fisiológica/genética , Animais , Oclusão Dentária , Dieta , Humanos , Mastigação/genética , Seleção Genética
20.
Syst Biol ; 64(5): 853-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25922515

RESUMO

Fossils provide the principal basis for temporal calibrations, which are critical to the accuracy of divergence dating analyses. Translating fossil data into minimum and maximum bounds for calibrations is the most important-often least appreciated-step of divergence dating. Properly justified calibrations require the synthesis of phylogenetic, paleontological, and geological evidence and can be difficult for nonspecialists to formulate. The dynamic nature of the fossil record (e.g., new discoveries, taxonomic revisions, updates of global or local stratigraphy) requires that calibration data be updated continually lest they become obsolete. Here, we announce the Fossil Calibration Database (http://fossilcalibrations.org), a new open-access resource providing vetted fossil calibrations to the scientific community. Calibrations accessioned into this database are based on individual fossil specimens and follow best practices for phylogenetic justification and geochronological constraint. The associated Fossil Calibration Series, a calibration-themed publication series at Palaeontologia Electronica, will serve as a key pipeline for peer-reviewed calibrations to enter the database.


Assuntos
Bases de Dados Factuais/normas , Fósseis , Filogenia , Acesso à Informação , Calibragem , Interpretação Estatística de Dados , Internet , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...