Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36984949

RESUMO

Transparent conductive electrodes (TCE) obtained by the electrospinning method and gold covered were used as cathodes in the organic light-emitting diodes (OLEDs) to create double side-emission. The electro-active nanofibers of poly(methyl methacrylate) (PMMA) with diameters in the range of several hundreds of nanometers, were prepared through the electrospinning method. The nanofibers were coated with gold by sputtering deposition, maintaining optimal transparency and conductivity to increase the electroluminescence on both electrodes. Optical, structural, and electrical measurements of the as-prepared transparent electrodes have shown good transparency and higher electrical conductivity. In this study, two types of OLEDs consisting of indium tin oxide (ITO)/ poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS)/ Ir(III) complex (8-hydroxyquinolinat bis(2-phenylpyridyl) iridium-IrQ(ppy)2 20 wt% embedded in N, N'-Dicarbazolyl-4,4'-biphenyl (CBP) sandwich structure and either gold-covered PMMA electrospun nanoweb (OLED with electrospun cathode) were fabricated together with a similar structure containing thin film gold cathodes (OLED with thin film cathode). The luminance-current-voltage characteristics, the capacitance-voltage, and the electroluminescence properties of these OLEDs were investigated.

2.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364671

RESUMO

To obtain highly homogeneous cobalt-nickel aluminate spinels with small crystallite sizes, CoNiAl alloy thin films were primarily deposited using Laser-induced Thermionic Vacuum Arc (LTVA) as a versatile method for performing processing of multiple materials, such as alloy/composite thin films, at a nanometric scale. Following thermal annealing in air, the CoNiAl metallic thin films were transformed into ceramic oxidic (Co,Ni)Al2O4 with controlled composition and crystallinity suitable for thermal stability and chemical resistance devices. Structural analysis revealed the formation of (Co,Ni)Al2O4 from the amorphous CoNiAl alloys. The mean crystallite size of the spinels was around 15 nm. Thermal annealing induces a densification process, increasing the film thickness together with the migration process of the aluminum toward the surface of the samples. The sheet resistance changed drastically from 200-240 Ω/sq to more than 106 Ω/sq, revealing a step-by-step conversion of the metallic character of the thin film to a dielectric oxidic structure. These cermet materials can be used as inert anodes for the solid oxide fuel cells (SOFCs), which require not only high stability with respect to oxidizing gases such as oxygen, but also good electrical conductivity. These combination metal-ceramics are known as bi-layer anodes. By controlling the crystallite size and the interplay between the oxide/metal composite, a balance between stability and electrical conductivity can be achieved.

3.
Nanotechnology ; 33(39)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35728559

RESUMO

Embedding electronic and optoelectronic devices in common, daily use objects is a fast developing field of research. New architectures are needed for migrating from the classic wafer- based substrates. Novel types of flexible PMMA/Au/Alq3/LiF/Al structures were obtained starting from electrospun polymer fibers. Thus, using an electrospinning process poly (methyl metacrylate) (PMMA) nanofibers were fabricated. A thin Au layer deposition rendered the fiber array conductive, this being further employed as the anode. The next steps consisted of the thermal evaporation of tris(8-hydroxyquinolinato) aluminum (Alq3) and aluminum deposition as the cathode. The Au covered PMMA nanofiber layer had a similar behavior with an indium tin oxide film i.e. low sheet resistance 10.6 Ω/sq and high transparency. The low electrode resistivities allow an electron drift mobility of about 10-6cm2V-1s-1at a low applied field, similar to the counterpart structures based on thin films. Concerning the relaxation processes in these structures, the Cole-Cole plots exhibit a slightly deformed semicircle, indicating a more complex equivalent circuit for the processes between metal electrodes and the active layer. This equivalent circuit includes reactance equivalent processes at the anode, cathode, in the active layer and most probably originates from the roughness of the metallic electrodes.

4.
Membranes (Basel) ; 12(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35629792

RESUMO

In recent years, iron oxides-based nanostructured composite materials are of particular interest for the preparation of multifunctional thin films and membranes to be used in sustainable magnetic field adsorption and photocatalysis processes, intelligent coatings, and packing or bio-medical applications. In this paper, superparamagnetic iron oxide (core)-silica (shell) nanoparticles suitable for thin films and membrane functionalization were obtained by co-precipitation and ultrasonic-assisted sol-gel methods. The comparative/combined effect of the magnetic core co-precipitation temperature (80 and 95 °C) and ZnO-doping of the silica shell on the photocatalytic and nano-sorption properties of the resulted composite nanoparticles were investigated by ultraviolet-visible (UV-VIS) spectroscopy monitoring the discoloration of methylene blue (MB) solution under ultraviolet (UV) irradiation and darkness, respectively. The morphology, structure, textural, and magnetic parameters of the investigated powders were evidenced by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) measurements, and saturation magnetization (vibrating sample magnetometry, VSM). The intraparticle diffusion model controlled the MB adsorption. The pseudo- and second-order kinetics described the MB photodegradation. When using SiO2-shell functionalized nanoparticles, the adsorption and photodegradation constant rates are three-four times higher than for using starting core iron oxide nanoparticles. The obtained magnetic nanoparticles (MNPs) were tested for films deposition.

5.
Materials (Basel) ; 13(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244686

RESUMO

The molecular structure of the 8-hydroxyquinoline-bis (2-phenylpyridyl) iridium (IrQ(ppy)2) dual emitter organometallic compound is determined based on detailed 1D and 2D nuclear magnetic resonance (NMR), to identify metal-ligands coordination, isomerization and chemical yield of the desired compound. Meanwhile, the extended X-ray absorption fine structure (EXAFS) was used to determine the interatomic distances around the iridium ion. From the NMR results, this compound IrQ(ppy)2 exhibits a trans isomerization with a distribution of coordinated N-atoms in a similar way to facial Ir(ppy)3. The EXAFS measurements confirm the structural model of the IrQ(ppy)2 compound where the oxygen atoms from the quinoline ligands induce the splitting of the next-nearest neighboring C in the second shell of the Ir3+ ions. The high-performance liquid chromatography (HPLC), as a part of the detailed molecular analysis, confirms the purity of the desired IrQ(ppy)2 organometallic compound as being more than 95%, together with the progress of the chemical reactions towards the final compound. The theoretical model of the IrQ(ppy)2, concerning the expected bond lengths, is compared with the structural model from the EXAFS and XRD measurements.

6.
J Photochem Photobiol B ; 102(1): 39-44, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-20934350

RESUMO

Free radicals generation is inhibited through green light (GL) irradiation in cellular systems and in chemical reactions. Standard melanocyte cultures were UV-irradiated and the induced cellular reactive oxygen species (ROS) were quantified by the fluorescence technique. The same cell cultures, previously protected by a 24h GL exposure, displayed a significantly lower ROS production. A simple chemical reaction is subsequently chosen, in which the production of free radicals is well defined. Paraffin wax and mineral oil were GL irradiated during thermal degradation and the oxidation products checked by chemiluminescence [CL] and Fourier transform infrared spectra [FT-IR]. The same clear inhibition of the radical oxidation of alkanes is recorded. A quantum chemistry modeling of these results is performed and a mechanism involving a new type of Rydberg macromolecular systems with implications for biology and medicine is suggested.


Assuntos
Luz , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Alcanos/química , Animais , Linhagem Celular , Cor , Radicais Livres/química , Radicais Livres/metabolismo , Cinética , Camundongos , Modelos Moleculares , Conformação Molecular , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Raios Ultravioleta
7.
Eur Biophys J ; 39(11): 1483-91, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20473754

RESUMO

This paper presents two new experimental results: the protective effect of green light (GL) on ultraviolet (UV) denaturation of proteins, and the effect of GL on protein macromolecular structures. The protective effect of GL was revealed on two serum albumins, bovine (BSA) and human (HSA), and recorded by electrophoresis, absorption, and circular dichroism spectra. The effect of GL irradiation on protein structure was recorded by using fluorescence spectroscopy and electrophoresis. These new effects were modeled by quantum-chemistry computation using Gaussian 03 W, leading to good fit between theoretical and experimental absorption and circular dichroism spectra. A mechanism for these phenomena is suggested, based on a double-photon absorption process. This nonlinear effect may lead to generation of long-lived Rydberg macromolecular systems, capable of long-range interactions. These newly suggested systems, with macroscopic quantum coherence behaviors, may block the UV denaturation processes.


Assuntos
Luz , Albumina Sérica/química , Absorção , Animais , Bovinos , Dicroísmo Circular , Cor , Eletroforese , Humanos , Modelos Moleculares , Conformação Proteica/efeitos da radiação , Desnaturação Proteica/efeitos da radiação , Espectrometria de Fluorescência , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...