Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(17): 8320-8325, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30962362

RESUMO

Sunlight drives photosynthesis but can also cause photodamage. To protect themselves, photosynthetic organisms dissipate the excess absorbed energy as heat, in a process known as nonphotochemical quenching (NPQ). In green algae, diatoms, and mosses, NPQ depends on the light-harvesting complex stress-related (LHCSR) proteins. Here we investigated NPQ in Chlamydomonas reinhardtii using an approach that maintains the cells in a stable quenched state. We show that in the presence of LHCSR3, all of the photosystem (PS) II complexes are quenched and the LHCs are the site of quenching, which occurs at a rate of ∼150 ps-1 and is not induced by LHCII aggregation. The effective light-harvesting capacity of PSII decreases upon NPQ, and the NPQ rate is independent of the redox state of the reaction center. Finally, we could measure the pH dependence of NPQ, showing that the luminal pH is always above 5.5 in vivo and highlighting the role of LHCSR3 as an ultrasensitive pH sensor.


Assuntos
Proteínas de Algas/fisiologia , Chlamydomonas , Concentração de Íons de Hidrogênio , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Proteínas de Algas/metabolismo , Chlamydomonas/fisiologia , Chlamydomonas/efeitos da radiação , Cinética , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Temperatura
2.
Plant Physiol ; 172(3): 1494-1505, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27637747

RESUMO

Photosynthetic organisms are exposed to drastic changes in light conditions, which can affect their photosynthetic efficiency and induce photodamage. To face these changes, they have developed a series of acclimation mechanisms. In this work, we have studied the acclimation strategies of Chlamydomonas reinhardtii, a model green alga that can grow using various carbon sources and is thus an excellent system in which to study photosynthesis. Like other photosynthetic algae, it has evolved inducible mechanisms to adapt to conditions where carbon supply is limiting. We have analyzed how the carbon availability influences the composition and organization of the photosynthetic apparatus and the capacity of the cells to acclimate to different light conditions. Using electron microscopy, biochemical, and fluorescence measurements, we show that differences in CO2 availability not only have a strong effect on the induction of the carbon-concentrating mechanisms but also change the acclimation strategy of the cells to light. For example, while cells in limiting CO2 maintain a large antenna even in high light and switch on energy-dissipative mechanisms, cells in high CO2 reduce the amount of pigments per cell and the antenna size. Our results show the high plasticity of the photosynthetic apparatus of C. reinhardtii This alga is able to use various photoacclimation strategies, and the choice of which to activate strongly depends on the carbon availability.


Assuntos
Aclimatação/efeitos da radiação , Carbono/farmacologia , Chlamydomonas reinhardtii/fisiologia , Chlamydomonas reinhardtii/efeitos da radiação , Luz , Aclimatação/efeitos dos fármacos , Proteínas de Algas/metabolismo , Carotenoides/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/ultraestrutura , Modelos Biológicos , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Pigmentos Biológicos/metabolismo , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
3.
Phys Chem Chem Phys ; 18(28): 19368-77, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27375175

RESUMO

Lhca4 is one of the peripheral antennae of higher plant photosystem I and it is characterized by the presence of chlorophyll a with absorption and emission bands around 30 nm red-shifted compared to those of the other chlorophylls associated with plant complexes. In this work we have investigated the origin of this red shift by using the recent structure of Lhca4 (Qin et al., Science, 2015, 348, 989) to build an exciton model that includes a charge-transfer (CT) state mixed with the excited-state manifold. A simultaneous quantitative fit of absorption, linear dichroism, fluorescence, and Stark absorption spectra of the wild-type Lhca4 and NH mutant (where the sites involved in CT are affected) enables us to determine the origin of the CT state and explore its spectral signatures. A huge borrowing of dipole strength by the CT, accompanied by anomalous broadening and red-shifting of the fluorescence as well as dramatic changes in the Stark spectrum, can be accounted for by a model implying an exciton-type mixing between excited states and CT states.

4.
Eur Biophys J ; 45(3): 209-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26518693

RESUMO

In response to changes in the reduction state of the plastoquinone pool in its thylakoid membrane, the green alga Chlamydomonas reinhardtti is performing state transitions: remodelling of its thylakoid membrane leads to a redistribution of excitations over photosystems I and II (PSI and PSII). These transitions are accompanied by marked changes in the 77 K fluorescence spectrum, which form the accepted signature of state transitions. The changes are generally thought to reflect a redistribution of light-harvesting complexes (LHCs) over PSII (fluorescing below 700 nm) and PSI (fluorescing above 700 nm). Here we studied the picosecond fluorescence properties of C. reinhardtti over a broad range of wavelengths with very low excitation intensities (0.2 nJ per laser pulse). Cells were directly used for time-resolved fluorescence measurements at 77 K without further treatment, such as medium exchange with glycerol. It is observed that upon going from state 1 (relatively more fluorescence below 700 nm) to state 2 (relatively more fluorescence above 700 nm), a large part of the fluorescence of LHC/PSII becomes substantially quenched in concurrence with LHC detachment from PSII, whereas the absolute amount of PSI fluorescence hardly changes. These results are in agreement with the recent proposal that the amount of LHC moving from PSII to PSI upon going from state 1 to state 2 is rather limited (Unlu et al. Proc Natl Acad Sci USA 111 (9):3460-3465, 2014).


Assuntos
Fluorescência , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA