Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sovrem Tekhnologii Med ; 12(6): 15-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796014

RESUMO

The aim of the study was to develop an ECG hardware and software system for monitoring electrical instability of the myocardium and to assess the diagnostic and prognostic capabilities of this setup in a cardiology clinic. MATERIALS AND METHODS: The Intecard 7.3 software and hardware system developed in this study makes it possible to measure fluctuations of the ECG amplitude-time parameters using the beat-to-beat mode. Intecard 7.3 evaluates a number of ECG markers that reflect electrical instability of the myocardium. Among them are the fragmented QRS complex, the spatial QRS-T angle, the T-wave alternans, the duration, and dispersion of the QT interval, the turbulence and acceleration/deceleration of the heart rhythm.Clinical trials of Intecard 7.3 were carried out with 734 patients with ischemic heart disease or cardiomyopathy and 112 healthy individuals. RESULTS: Intecard 7.3 reliably identifies fragmented QRS complexes by detecting short spikes of <25 ms in the ascending parts of the Q, R, and S waves. The QRS-T angle is determined from the reference amplitudes of the R and T waves in leads avF, V2, V5, and V6. Digital precision processing of the ECG signal improves its accuracy to microvolts and microseconds.The software was designed to measure the T-wave amplitude in each of 300-500 cardiobeats; T-wave alternans was estimated by the moving average method. In a typical cardiobeat, the QT dispersion was calculated based on 12 ECG leads. From the sequence of RR intervals, turbulence, and deceleration of the heart rhythm were determined.During the observation period of 5.0 [2.1; 5.9] years, 90 out of 734 patients (12.3%) experienced adverse cardiovascular events (ACVE). In this period, the myocardial electrical instability was recorded in patients with ACVE more frequently than in those without ACVE. Thus, the frequency of fragmented QRS was 72.2±4.7 vs 16.8±1.5% (p<0.01), the values of the QRS-T angle were 128 [55; 101] vs 80 [53; 121]° (p<0.001), the T-wave alternans - 36.9 [15.5; 62.1] vs 21.9 [10.2; 30.7] µV (p<0.005), the QT interval - 408 [383; 438] vs 376 [351; 400] ms (p<0.001), the QT dispersion - 76 [57; 96] vs 64 [50; 92] ms (p<0.005), respectively. In patients with ACVE, the threshold that triggers pathological rhythm turbulence was higher (>0%) than that in healthy controls (p<0.001); the deceleration of the heart rhythm was reduced from 19.2 [2.2; 38.0] to 8.8 [4.0; 16.8] ms (p<0.05).A personalized model for ACVE risk stratification has been developed. In this model, the area under the ROC curve was 0.856; sensitivity - 75%; specificity - 78%; predictive accuracy - 77%. CONCLUSION: Using the ECG markers of myocardial electrical instability, the Intecard 7.3 system allows one to predict life-threatening ventricular tachyarrhythmias and sudden cardiac death with an accuracy of 77%. The non-invasiveness, high productivity, and reasonable cost ensure the availability of this predictive technology in all levels of healthcare.


Assuntos
Eletrocardiografia , Taquicardia Ventricular , Arritmias Cardíacas/diagnóstico , Morte Súbita Cardíaca , Humanos , Miocárdio
2.
J Phys Chem B ; 111(2): 393-401, 2007 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-17214491

RESUMO

The corresponding-states principle (CSP) has been considered for the development of the equations of state (EOS) of minor isotopologues that are usually unknown. We demonstrate that, for isotopologues of a given molecular fluid, a general extended multi-parameter corresponding-states EOS can be reduced to the three-parameter EOS, utilizing the critical parameters (temperature and density) and Pitzer's acentric factor as correlation parameters. Appropriate general CSP mathematical formalism and equations for constructing the EOS of minor isotopologues are described in detail. The formalism and equations were applied to isotopologues of water and demonstrated that the isotopic effect on the critical parameters and the acentric factor of H(2)(18)O can be successfully calculated from the EOS of H2O and experimental data on the isotope effects (liquid-vapor isotope fractionation factor and molar volume isotope effect). We have also shown that the experimental data on the vapor pressure isotope effect (VPIE) for 18O-substituted water are inconsistent within the framework of thermodynamics with the liquid-vapor oxygen isotope fractionation factor. The novel approach of CSP to isotopologues developed in this study creates a new opportunity for constructing the EOS of minor isotopologues for many other molecular fluids.

3.
J Phys Chem A ; 109(38): 8642-5, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16834265

RESUMO

Deviations from the random distribution of hydrogen isotopes among isotopic species of liquid and vapor water (the rule of the geometric mean) were critically assessed theoretically and experimentally from the triple to critical point of water. A third-order polynomial equation of the classical near-critical expansion was used to accurately describe the liquid-vapor isotope fractionation of H2O and D2O on the basis of their equations of state. It was found that experimental data for the enthalpy of mixing of H2O-D2O can be used to calculate accurately the deviation from the rule of the geometric mean in liquid and vapor water, ln(KD(v)/KD(l)). A new equation obtained in this study shows that the value of ln(KD(v)/KD(l)) smoothly decreases from +0.009 to 0 with increasing temperature from the triple to critical temperature of water. In contrast, the equation available in the literature and that derived from mass spectrometric measurements of liquid-vapor partitioning of H2O and HDO show complex behavior, including maximum, minimum, and crossover.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...