Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 22(2): 209-220, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847239

RESUMO

The transcription factor, SOX10, plays an important role in the differentiation of neural crest precursors to the melanocytic lineage. Malignant transformation of melanocytes leads to the development of melanoma, and SOX10 promotes melanoma cell proliferation and tumor formation. SOX10 expression in melanomas is heterogeneous, and loss of SOX10 causes a phenotypic switch toward an invasive, mesenchymal-like cell state and therapy resistance; hence, strategies to target SOX10-deficient cells are an active area of investigation. The impact of cell state and SOX10 expression on antitumor immunity is not well understood but will likely have important implications for immunotherapeutic interventions. To this end, we tested whether SOX10 status affects the response to CD8+ T cell-mediated killing and T cell-secreted cytokines, TNFα and IFNγ, which are critical effectors in the cytotoxic killing of cancer cells. We observed that genetic ablation of SOX10 rendered melanoma cells more sensitive to CD8+ T cell-mediated killing and cell death induction by either TNFα or IFNγ. Cytokine-mediated cell death in SOX10-deficient cells was associated with features of caspase-dependent pyroptosis, an inflammatory form of cell death that has the potential to increase immune responses. IMPLICATIONS: These data support a role for SOX10 expression altering the response to T cell-mediated cell death and contribute to a broader understanding of the interaction between immune cells and melanoma cells.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Citocinas , Fator de Necrose Tumoral alfa , Morte Celular , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
2.
Mol Cancer Res ; 20(12): 1811-1821, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044013

RESUMO

Lack of response and acquired resistance continue to be limitations of targeted and immune-based therapies. Pyroptosis is an inflammatory form of cell death characterized by the release of inflammatory damage-associated molecular patterns (DAMP) and cytokines via gasdermin (GSDM) protein pores in the plasma membrane. Induction of pyroptosis has implications for treatment strategies in both therapy-responsive, as well as resistance forms of melanoma. We show that the caspase-3 activator, raptinal, induces pyroptosis in both human and mouse melanoma cell line models and delays tumor growth in vivo. Release of DAMPs and inflammatory cytokines was dependent on caspase activity and GSDME expression. Furthermore, raptinal stimulated pyroptosis in melanoma models that have acquired resistance to BRAF and MEK inhibitor therapy. These findings add support to efforts to induce pyroptosis in both the treatment-naïve and resistant settings. IMPLICATIONS: Raptinal can rapidly induce pyroptosis in naïve and BRAFi plus MEKi-resistant melanoma, which may be beneficial for patients who have developed acquired resistance to targeted therapies.


Assuntos
Melanoma , Piroptose , Camundongos , Animais , Humanos , Piroptose/fisiologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Ciclopentanos , Citocinas
3.
Nat Commun ; 13(1): 1381, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296667

RESUMO

Cellular plasticity contributes to intra-tumoral heterogeneity and phenotype switching, which enable adaptation to metastatic microenvironments and resistance to therapies. Mechanisms underlying tumor cell plasticity remain poorly understood. SOX10, a neural crest lineage transcription factor, is heterogeneously expressed in melanomas. Loss of SOX10 reduces proliferation, leads to invasive properties, including the expression of mesenchymal genes and extracellular matrix, and promotes tolerance to BRAF and/or MEK inhibitors. We identify the class of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) inhibitors as inducing cell death selectively in SOX10-deficient cells. Targeted therapy selects for SOX10 knockout cells underscoring their drug tolerant properties. Combining cIAP1/2 inhibitor with BRAF/MEK inhibitors delays the onset of acquired resistance in melanomas in vivo. These data suggest that SOX10 mediates phenotypic switching in cutaneous melanoma to produce a targeted inhibitor tolerant state that is likely a prelude to the acquisition of resistance. Furthermore, we provide a therapeutic strategy to selectively eliminate SOX10-deficient cells.


Assuntos
Melanoma , Neoplasias Cutâneas , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Microambiente Tumoral
4.
Cell Rep ; 37(10): 110085, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879275

RESUMO

Developmental factors may regulate the expression of immune modulatory proteins in cancer, linking embryonic development and cancer cell immune evasion. This is particularly relevant in melanoma because immune checkpoint inhibitors are commonly used in the clinic. SRY-box transcription factor 10 (SOX10) mediates neural crest development and is required for melanoma cell growth. In this study, we investigate immune-related targets of SOX10 and observe positive regulation of herpesvirus entry mediator (HVEM) and carcinoembryonic-antigen cell-adhesion molecule 1 (CEACAM1). Sox10 knockout reduces tumor growth in vivo, and this effect is exacerbated in immune-competent models. Modulation of CEACAM1 expression but not HVEM elicits modest effects on tumor growth. Importantly, Sox10 knockout effects on tumor growth are dependent, in part, on CD8+ T cells. Extending this analysis to samples from patients with cutaneous melanoma, we observe a negative correlation with SOX10 and immune-related pathways. These data demonstrate a role for SOX10 in regulating immune checkpoint protein expression and anti-tumor immunity in melanoma.


Assuntos
Proliferação de Células , Melanoma/metabolismo , Fatores de Transcrição SOXE/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Melanoma/genética , Melanoma/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Fatores de Transcrição SOXE/genética , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Carga Tumoral
5.
Clin Exp Rheumatol ; 39(6): 1298-1306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33253099

RESUMO

OBJECTIVES: Systemic sclerosis (SSc) is characterised by severe fibroproliferative vasculopathy, fibrosis in skin and multiple internal organs, and humoral, cellular and innate immunity abnormalities. Vascular alterations are the earliest and most severe SSc manifestations, however, the mechanisms responsible have remained elusive. To investigate the molecular abnormalities involved in SSc-vasculopathy we examined global gene expression differences between highly purified lung microvascular endothelial cells (MVECs) from patients with SSc-interstitial lung disease (SSc-ILD) and normal lung MVECs. METHODS: MVECs were isolated from fresh transplanted lungs from patients with SSc-ILD. Sequential CD31 and CD102 immunopurification was performed to obtain highly purified CD31+/CD102+ lung MVECs. Global gene expression analysis was successfully performed in CD31+/CD102+ MVEC from two SSc-ILD patients and from two normal lungs. RT-PCR, Western blots, and indirect immunofluorescence validated the gene expression results. RESULTS: Numerous interferon-regulated genes (IRGs) including IFI44, IFI44L, IFI6, IFIH1, IFIT1, ISG-15, BST-2/Tetherin, and RSAD2/Viperin, genes encoding innate immunity antiviral responses (OAS1, OAS2, OAS3, OASL) and antiviral MX1 and MX2 proteins, and mesenchymal cell-specific genes were significantly overexpressed in CD31+/CD102+ SSc-ILD lung MVECs. CONCLUSIONS: Highly purified CD31+/CD102+ MVECs from lungs from SSc patients with end stage SSc-ILD displayed remarkable overexpression of numerous IRGs and of genes encoding antiviral innate immune response and antiviral proteins. These observations suggest that interferon-induced and antiviral response proteins may participate in the pathogenesis of SSc vasculopathy and SSc-ILD. The CD31+/CD102+ lung MVECs from SSc-ILD also showed elevated expression of mesenchymal cell-specific genes confirming the presence of endothelial to mesenchymal transition in SSc-ILD.


Assuntos
Fatores de Restrição Antivirais/genética , Interferons , Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Células Endoteliais , Humanos , Pulmão , Doenças Pulmonares Intersticiais/genética , Escleroderma Sistêmico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...