Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 398: 130509, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452949

RESUMO

This study investigates nutrient recovery from synthetic municipal wastewater using co-immobilized cultures of Chlorella vulgaris TISTR 8580 (CV) and plant growth-promoting bacteria, Bacillus subtilis TISTR 1415 (BS) as living biofilters for a subsequent biofertilizer activity. The optimal condition for nutrient recovery was at the 1:1 ratio of CV/BS using mixed guar gum/carrageenan (GG/CG) binders. After 7-day wastewater treatment, the living biofilters removed 86.7 ± 0.5% of ammonium and 99.3 ± 0.3% of phosphates and were tested subsequently as biofertilizers for 20 days to grow selected plants. The highest optimal biomass and chlorophyll a content was 2 ± 0.3 g (CV/BS 3:1) and 12.4 ± 0.7 µg/g (CV/BS 1:1) from cucumber respectively, however, the close-to-neutral pH (8.0 ± 0.3) was observed from sunflower using CV/BS 1:1 living biofilters. Conclusively, the designed living biofilters exhibit the potential to recover nutrients from wastewater and be used as biofertilizers for circular agriculture.


Assuntos
Chlorella vulgaris , Microalgas , Águas Residuárias , Técnicas de Cocultura , Clorofila A , Bactérias , Nutrientes , Biomassa , Nitrogênio
2.
Microbiol Resour Announc ; 13(3): e0098023, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38329355

RESUMO

We present six whole community shotgun metagenomic sequencing data sets of two types of biological soil crusts sampled at the ecotone of the Mojave Desert and Colorado Desert in California. These data will help us understand the diversity and function of biocrust microbial communities, which are essential for desert ecosystems.

3.
Microbiol Resour Announc ; 13(2): e0108023, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38189307

RESUMO

We present eight metatranscriptomic datasets of light algal and cyanolichen biological soil crusts from the Mojave Desert in response to wetting. These data will help us understand gene expression patterns in desert biocrust microbial communities after they have been reactivated by the addition of water.

4.
Front Microbiol ; 14: 1135800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350785

RESUMO

Introduction: Soil microbial communities, including biological soil crust microbiomes, play key roles in water, carbon and nitrogen cycling, biological weathering, and other nutrient releasing processes of desert ecosystems. However, our knowledge of microbial distribution patterns and ecological drivers is still poor, especially so for the Chihuahuan Desert. Methods: This project investigated the effects of trampling disturbance on surface soil microbiomes, explored community composition and structure, and related patterns to abiotic and biotic landscape characteristics within the Chihuahuan Desert biome. Composite soil samples were collected in disturbed and undisturbed areas of 15 long-term ecological research plots in the Jornada Basin, New Mexico. Microbial diversity of cross-domain microbial groups (total Bacteria, Cyanobacteria, Archaea, and Fungi) was obtained via DNA amplicon metabarcode sequencing. Sequence data were related to landscape characteristics including vegetation type, landforms, ecological site and state as well as soil properties including gravel content, soil texture, pH, and electrical conductivity. Results: Filamentous Cyanobacteria dominated the photoautotrophic community while Proteobacteria and Actinobacteria dominated among the heterotrophic bacteria. Thaumarchaeota were the most abundant Archaea and drought adapted taxa in Dothideomycetes and Agaricomycetes were most abundant fungi in the soil surface microbiomes. Apart from richness within Archaea (p = 0.0124), disturbed samples did not differ from undisturbed samples with respect to alpha diversity and community composition (p ≥ 0.05), possibly due to a lack of frequent or impactful disturbance. Vegetation type and landform showed differences in richness of Bacteria, Archaea, and Cyanobacteria but not in Fungi. Richness lacked strong relationships with soil variables. Landscape features including parent material, vegetation type, landform type, and ecological sites and states, exhibited stronger influence on relative abundances and microbial community composition than on alpha diversity, especially for Cyanobacteria and Fungi. Soil texture, moisture, pH, electrical conductivity, lichen cover, and perennial plant biomass correlated strongly with microbial community gradients detected in NMDS ordinations. Discussion: Our study provides first comprehensive insights into the relationships between landscape characteristics, associated soil properties, and cross-domain soil microbiomes in the Chihuahuan Desert. Our findings will inform land management and restoration efforts and aid in the understanding of processes such as desertification and state transitioning, which represent urgent ecological and economical challenges in drylands around the world.

5.
Life (Basel) ; 14(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276260

RESUMO

Despite their enormous impact on the environment and humans, the distribution and variety of the biggest natural secondary metabolite producers, the genus Streptomyces, have not been adequately investigated. We developed representative maps from public EMP 16S rRNA amplicon sequences microbiomics data. Streptomyces ASVs were extracted from the EMP overall bacterial community, demonstrating Streptomyces diversity and identifying crucial diversity patterns. Our findings revealed that while the EMP primarily distinguished bacterial communities as host-associated or free-living (EMPO level 1), the Streptomyces community showed no significant difference but exhibited distinctions between categories in EMPO level 2 (animal, plant, non-saline, and saline). Multiple linear regression analysis demonstrated that pH, temperature, and salinity significantly predicted Streptomyces richness, with richness decreasing as these factors increased. However, latitude and longitude do not predict Streptomyces richness. Our Streptomyces maps revealed that additional samplings in Africa and Southeast Asia are needed. Additionally, our findings indicated that a greater number of samples did not always result in greater Streptomyces richness; future surveys may not necessitate extensive sampling from a single location. Broader sampling, rather than local/regional sampling, may be more critical in answering microbial biogeograph questions. Lastly, using 16S rRNA gene sequencing data has some limitations, which should be interpreted cautiously.

6.
J Biotechnol ; 360: 198-210, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36414126

RESUMO

Biological wastewater treatment is a promising and environmentally friendly method that utilises living microorganisms to remediate water and enable recovery or conversion of contaminants into valuable products. For many decades, microalgae and cyanobacteria, photosynthetic living microorganisms, have been explored extensively for wastewater bioremediation. They can be used for recovering valuable nutrients such as nitrogen and phosphorous from secondary effluents and capable of transforming those nutrients into marketable products such as biofuels, biofertilisers, nutraceutical, and pigments for promoting a Bio-Circular Green economy. In recent years, there has been a shift towards mixing compatible microalgae with bacteria, which is inspired by their natural symbiotic relationships to increase nitrogen and phosphorus recoveries. With this enhanced bioremediation, recovery of polluted wastes can be intensified and higher biomass quality (with high nutrient density) can be achieved. This review focuses on the state-of-the-art of mixed microalgal-bacterial cultivating systems. A comprehensive comparison of existing studies that used Chlorella species as microalgae in various mixed microalgal-bacterial cultivating systems (suspension, biofilm, and immobilisation) for nitrogen and phosphorus recoveries from wastewater is conducted. Key technical challenges such as balancing microalgae and bacteria species, pH regulation, light distribution, biomass harvesting, and biomass conversion are also discussed. From the data comparisons among different cultivation systems, it has been suggested that immobilisation appears to require less amount of operational light compared to the suspended and biofilm-based systems for similar nitrogen and phosphorus removal efficiencies.


Assuntos
Chlorella , Microalgas , Fósforo , Nitrogênio , Águas Residuárias , Bactérias
7.
Front Microbiol ; 13: 856454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836417

RESUMO

Dust provides an ecologically significant input of nutrients, especially in slowly eroding ecosystems where chemical weathering intensity limits nutrient inputs from underlying bedrock. In addition to nutrient inputs, incoming dust is a vector for dispersing dust-associated microorganisms. While little is known about dust-microbial dispersal, dust deposits may have transformative effects on ecosystems far from where the dust was emitted. Using molecular analyses, we examined spatiotemporal variation in incoming dust microbiomes along an elevational gradient within the Sierra Nevada of California. We sampled throughout two dry seasons and found that dust microbiomes differed by elevation across two summer dry seasons (2014 and 2015), which corresponded to competing droughts in dust source areas. Dust microbial taxa richness decreased with elevation and was inversely proportional to dust heterogeneity. Likewise, dust phosphorus content increased with elevation. At lower elevations, early season dust microbiomes were more diverse than those found later in the year. The relative abundances of microbial groups shifted during the summer dry season. Furthermore, mutualistic fungal diversity increased with elevation, which may have corresponded with the biogeography of their plant hosts. Although dust fungal pathogen diversity was equivalent across elevations, elevation and sampling month interactions for the relative abundance, diversity, and richness of fungal pathogens suggest that these pathogens differed temporally across elevations, with potential implications for humans and wildlife. This study shows that landscape topography and droughts in source locations may alter the composition and diversity of ecologically relevant dust-associated microorganisms.

8.
Microbiol Resour Announc ; 10(25): e0049421, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34165331

RESUMO

Endolithic microorganisms have been reported to date in hot and cold drylands worldwide, where they represent the prevailing life forms ensuring ecosystem functionality, playing a paramount role in global biogeochemical processes. We report here an amplicon sequencing characterization of rocks collected from Joshua Tree National Park (JTNP), USA.

9.
Glob Chang Biol ; 26(12): 7112-7127, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32902066

RESUMO

Global climate and land use change are causing woody plant encroachment in arctic, alpine, and arid/semi-arid ecosystems around the world, yet our understanding of the belowground impacts of this phenomenon is limited. We conducted a globally distributed field study of 13 alpine sites across four continents undergoing woody plant encroachment and sampled soils from both woody encroached and nearby herbaceous plant community types. We found that woody plant encroachment influenced soil microbial richness and community composition across sites based on multiple factors including woody plant traits, site level climate, and abiotic soil conditions. In particular, root symbiont type was a key determinant of belowground effects, as Nitrogen-fixing woody plants had higher soil fungal richness, while Ecto/Ericoid mycorrhizal species had higher soil bacterial richness and symbiont types had distinct soil microbial community composition. Woody plant leaf traits indirectly influenced soil microbes through their impact on soil abiotic conditions, primarily soil pH and C:N ratios. Finally, site-level climate affected the overall magnitude and direction of woody plant influence, as soil fungal and bacterial richness were either higher or lower in woody encroached versus herbaceous soils depending on mean annual temperature and precipitation. All together, these results document global impacts of woody plant encroachment on soil microbial communities, but highlight that multiple biotic and abiotic pathways must be considered to scale up globally from site- and species-level patterns. Considering both the aboveground and belowground effects of woody encroachment will be critical to predict future changes in alpine ecosystem structure and function and subsequent feedbacks to the global climate system.


Assuntos
Ecossistema , Solo , Clima , Nitrogênio/análise , Plantas
10.
Microorganisms ; 8(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585947

RESUMO

The endolithic niche represents an ultimate refuge to microorganisms in the Mars-like environment of the Antarctic desert. In an era of rapid global change and desertification, the interest in these border ecosystems is increasing due to speculation on how they maintain balance and functionality at the dry limits of life. To assure a reliable estimation of microbial diversity, proper sampling must be planned in order to avoid the necessity of re-sampling as reaching these remote locations is risky and requires tremendous logistical and economical efforts. In this study, we seek to determine the minimum number of samples for uncovering comprehensive bacterial and fungal diversity, comparing communities in strict vicinity to each other. We selected three different locations of the Victoria Land (Continental Antarctica) at different altitudes and showing sandstone outcrops of a diverse nature and origin-Battleship promontory (834 m above sea level (a.s.l.), Southern VL), Trio Nunatak (1,470 m a.s.l., Northern VL) and Mt New Zealand (3,100 m a.s.l., Northern VL). Overall, we found that a wider sampling would be required to capture the whole amplitude of microbial diversity, particularly in Northern VL. We concluded that the inhomogeneity of the rock matrix and the stronger environmental pressure at higher altitudes may force the communities to a higher local diversification.

11.
FEMS Microbiol Ecol ; 96(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32573682

RESUMO

Biocrusts are the living skin of drylands, comprising diverse microbial communities that are essential to desert ecosystems. Despite there being extensive knowledge on biocrust ecosystem functions and lichen and moss biodiversity, little is known about factors structuring diversity among their microbial communities. We used amplicon-based metabarcode sequencing to survey microbial communities from biocrust surface and subsurface soils at four sites located within the Mojave Desert. Five biocrust types were examined: Light-algal/Cyanobacteria, Cyanolichen, Green-algal lichen, Smooth-moss and Rough-moss crust types. Microbial diversity in biocrusts was structured by several characteristics: (i) central versus southern Mojave sites displayed different community signatures, (ii) indicator taxa of plant-associated fungi (plant pathogens and wood saprotrophs) were identified at each site, (iii) surface and subsurface microbial communities were distinct and (iv) crust types had distinct indicator taxa. Network analysis ranked bacteria-bacteria interactions as the most connected of all within-domain and cross-domain interaction networks in biocrust surface samples. Actinobacteria, Proteobacteria, Cyanobacteria and Ascomycota functioned as hubs among all phyla. The bacteria Pseudonocardia sp. (Pseudonocardiales, Actinobacteria) and fungus Alternaria sp. (Pleosporales, Ascomycota) were the most connected had the highest node degree. Our findings provide crucial insights for dryland microbial community ecology, conservation and sustainable management.


Assuntos
Briófitas , Microbiota , Clima Desértico , Ecossistema , Geografia , Solo , Microbiologia do Solo
12.
Life (Basel) ; 10(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041249

RESUMO

The microbial communities that inhabit lithic niches inside sandstone in the Antarctic McMurdo Dry Valleys of life's limits on Earth. The cryptoendolithic communities survive in these ice-free areas that have the lowest temperatures on Earth coupled with strong thermal fluctuations, extreme aridity, oligotrophy and high levels of solar and UV radiation. In this study, based on DNA metabarcoding, targeting the fungal Internal Transcribed Spacer region 1 (ITS1) and multivariate statistical analyses, we supply the first comprehensive overview onto the fungal diversity and composition of these communities sampled over a broad geographic area of the Antarctic hyper-arid cold desert. Six locations with surfaces that experience variable sun exposure were sampled to compare communities from a common area across a gradient of environmental pressure. The Operational Taxonomic Units (OTUs) identified were primarily members of the Ascomycota phylum, comprised mostly of the Lecanoromycetes and Dothideomycetes classes. The fungal species Friedmanniomyces endolithicus, endemic to Antarctica, was found to be a marker species to the harshest conditions occurring in the shady, south exposed rock surfaces. Analysis of community composition showed that sun exposure was an environmental property that explained community diversity and structured endolithic colonization.

13.
Environ Microbiol Rep ; 11(5): 718-726, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31393667

RESUMO

Endolithic growth within rocks is a critical adaptation of microbes living in harsh environments where exposure to extreme temperature, radiation, and desiccation limits the predominant life forms, such as in the ice-free regions of Continental Antarctica. The microbial diversity of the endolithic communities in these areas has been sparsely examined. In this work, diversity and composition of bacterial assemblages in the cryptoendolithic lichen-dominated communities of Victoria Land (Continental Antarctica) were explored using a high-throughput metabarcoding approach, targeting the V4 region of 16S rDNA. Rocks were collected in 12 different localities (from 14 different sites), along a gradient ranging from 1000 to 3300 m a.s.l. and at a sea distance ranging from 29 to 96 km. The results indicate Actinobacteria and Proteobacteria are the dominant taxa in all samples and defined a 'core' group of bacterial taxa across all sites. The structure of bacteria communities is correlated with the fungal counterpart and among the environmental parameters considered, altitude was found to influence bacterial biodiversity, while distance from sea had no evident influence.


Assuntos
Altitude , Bactérias/classificação , Biodiversidade , Fungos/classificação , Microbiota , Regiões Antárticas , DNA Bacteriano/genética , Variação Genética , Filogenia , Análise de Sequência de DNA , Microbiologia do Solo
14.
Front Microbiol ; 9: 1392, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008702

RESUMO

Endolithic growth is one of the most spectacular microbial adaptations to extreme environmental constraints and the predominant life-form in the ice-free areas of Continental Antarctica. Although Antarctic endolithic microbial communities are known to host among the most resistant and extreme-adapted organisms, our knowledge on microbial diversity and composition in this peculiar niche is still limited. In this study, we investigated the diversity and structure of the fungal assemblage in the cryptoendolithic communities inhabiting sandstone using a meta-barcoding approach targeting the fungal Internal Transcribed Sequence region 1 (ITS1). Samples were collected from 14 sites in the Victoria Land, along an altitudinal gradient ranging from 1,000 to 3,300 m a.s.l. and from 29 to 96 km distance to coast. Our study revealed a clear dominance of a 'core' group of fungal taxa consistently present across all the samples, mainly composed of lichen-forming and Dothideomycetous fungi. Pareto-Lorenz curves indicated a very high degree of specialization (F0 approximately 95%), suggesting these communities are highly adapted but have limited ability to recover after perturbations. Overall, both fungal community biodiversity and composition did not show any correlation with the considered abiotic parameters, potentially due to strong fluctuations of environmental conditions at local scales.

15.
Life (Basel) ; 8(2)2018 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-29865244

RESUMO

Antarctic cryptoendolithic microbial communities dominate ice-free areas of continental Antarctica, among the harshest environments on Earth. The endolithic lifestyle is a remarkable adaptation to the exceptional environmental extremes of this area, which is considered the closest terrestrial example to conditions on Mars. Recent efforts have attempted to elucidate composition of these extremely adapted communities, but the functionality of these microbes have remained unexplored. We have tested for interactions between measured environmental characteristics, fungal community membership, and inferred functional classification of the fungi present and found altitude and sun exposure were primary factors. Sandstone rocks were collected in Victoria Land, Antarctica along an altitudinal gradient from 834 to 3100 m a.s.l.; differently sun-exposed rocks were selected to test the influence of this parameter on endolithic settlement. Metabarcoding targeting the fungal internal transcribed spacer region 1 (ITS1) was used to catalogue the species found in these communities. Functional profile of guilds found in the samples was associated to species using FUNGuild and variation in functional groups compared across sunlight exposure and altitude. Results revealed clear dominance of lichenized and stress-tolerant fungi in endolithic communities. The main variations in composition and abundance of functional groups among sites correlated to sun exposure, but not to altitude.

16.
Mol Ecol ; 27(10): 2461-2476, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29675967

RESUMO

Global climate and land use change are altering plant and soil microbial communities worldwide, particularly in arctic and alpine biomes where warming is accelerated. The widespread expansion of woody shrubs into historically herbaceous alpine plant zones is likely to interact with climate to affect soil microbial community structure and function; however, our understanding of alpine soil ecology remains limited. This study aimed to (i) determine whether the diversity and community composition of soil fungi vary across elevation gradients and to (ii) assess the impact of woody shrub expansion on these patterns. In the White Mountains of California, sagebrush (Artemisia rothrockii) shrubs have been expanding upwards into alpine areas since 1960. In this study, we combined observational field data with a manipulative shrub removal experiment along an elevation transect of alpine shrub expansion. We utilized next-generation sequencing of the ITS1 region for fungi and joint distribution modelling to tease apart effects of the environment and intracommunity interactions on soil fungi. We found that soil fungal diversity declines and community composition changes with increasing elevation. Both abiotic factors (primarily soil moisture and soil organic C) and woody sagebrush range expansion had significant effects on these patterns. However, fungal diversity and relative abundance had high spatial variation, overwhelming the predictive power of vegetation type, elevation and abiotic soil conditions at the landscape scale. Finally, we observed positive and negative associations among fungal taxa which may be important in structuring community responses to global change.


Assuntos
Artemisia/fisiologia , Fungos/genética , Micobioma , Microbiologia do Solo , Altitude , Artemisia/genética , Biodiversidade , California , Mudança Climática , DNA Fúngico/química , Variação Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...