Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Curr Protoc ; 3(3): e650, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36912603

RESUMO

This article presents detailed descriptions of procedures and troubleshooting tips for solid-supported membrane (SSM)-based electrophysiology assays (SURFE²R) to measure electrogenic solute carrier transporter proteins (SLCs) and assess the effects of compounds that modulate their activity. SURFE²R allows the use of the standard 96-well format, making it an ideal platform for tertiary assays in a drug-discovery campaign. The assays are performed with cell-line-derived membrane fractions or proteoliposomes containing the transporter of interest. Three main protocols are described for the isolation of membrane fractions from cell culture and the generation of proteoliposomes containing the transporter of interest. Additionally, detailed protocols for SURFE²R single concentration and dose-response experiments are included to measure the potencies of test compounds in stimulating or inhibiting transporter function (EC50 or IC50 values, respectively) and kinetic functional assays to calculate apparent affinity (kM ) and maximal velocity (Vmax ) of substrate uptake. © 2023 Sanofi. Current Protocols published by Wiley Periodicals LLC. PROTOCOL GROUP 1: Sample preparation for SSM-based electrophysiology assays Support Protocol 1: Production of cell batches Support Protocol 2: Simple isolation of cell membranes Alternate Protocol 1: Isolation of cell membranes with sucrose gradient pre-purification Support Protocol 3: Production and isolation of liposomes Support Protocol 4: Preparation of sensor with isolated cell membranes Alternate Protocol 2: Preparation of sensor with isolated proteoliposomes PROTOCOL GROUP 2: Determination of assay parameters for SSM-based electrophysiology assay Support Protocol 5: Assay with stable buffer Alternate Protocol 3: Assay with ion gradient Support Protocol 6: Determination of membrane/liposome concentration Support Protocol 7: Determination of substrate dependency kM PROTOCOL GROUP 3: Determination of advanced assay parameters for SSM-based electrophysiology assays Support Protocol 8: Assessment of ion concentration dependency Support Protocol 9: Assessment of pH dependency Support Protocol 10: Assessment of DMSO dependency Support Protocol 11: Assessment of signal stability with multiple activations PROTOCOL GROUP 4: Compound testing through SSM-based electrophysiology assays using SURFE²R apparatus Support Protocol 12: Assessment of signal specificity of a published inhibitor or unknown compound(s) Support Protocol 13: Compound wash-out Support Protocol 14: Statistical analysis.


Assuntos
Descoberta de Drogas , Proteínas de Membrana Transportadoras , Eletrofisiologia/métodos , Proteínas de Membrana Transportadoras/metabolismo , Membranas/metabolismo , Membrana Celular/metabolismo , Lipossomos
3.
SLAS Discov ; 27(5): 298-305, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460923

RESUMO

Acoustic droplet ejection mass spectrometry (ADE-MS) has recently emerged as a promising label-free, MS-based readout method for high throughput screening (HTS) campaigns in early pharmaceutical drug discovery, since it enables high-speed analysis directly from 384- or 1536-well plates. In this manuscript we describe our characterization of an ADE-MS based high sample content enzymatic assay for mutant isocitrate dehydrogenase 1 (IDH1) R132H with a strong focus on assay development. IDH1 R132H has become a very attractive therapeutic target in the field of antitumor drug discovery, and several pharmaceutical companies have attempted to develop novel small molecule inhibitors against mutant IDH1. With the development of an mIDH1 ADE-MS based HTS assay and a detailed comparison of this new readout technique to the commonly used fluorescence intensity mIDH1 assay, we demonstrated good correlation of both methods and were able to identify new potent inhibitors of mIDH1.


Assuntos
Ensaios de Triagem em Larga Escala , Isocitrato Desidrogenase , Acústica , Ensaios de Triagem em Larga Escala/métodos , Isocitrato Desidrogenase/genética , Espectrometria de Massas , Preparações Farmacêuticas
4.
SLAS Discov ; 26(6): 783-797, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955247

RESUMO

Classical high-throughput screening (HTS) technologies for the analysis of ionic currents across biological membranes can be performed using fluorescence-based, radioactive, and mass spectrometry (MS)-based uptake assays. These assays provide rapid results for pharmacological HTS, but the underlying, indirect analytical character of these assays can be linked to high false-positive hit rates. Thus, orthogonal and secondary assays using more biological target-based technologies are indispensable for further compound validation and optimization. Direct assay technologies for transporter proteins are electrophysiology-based, but are also complex, time-consuming, and not well applicable for automated profiling purposes. In contrast to conventional patch clamp systems, solid supported membrane (SSM)-based electrophysiology is a sensitive, membrane-based method for transporter analysis, and current technical developments target the demand for automated, accelerated, and sensitive assays for transporter-directed compound screening. In this study, the suitability of the SSM-based technique for pharmacological compound identification and optimization was evaluated performing cell-free SSM-based measurements with the electrogenic amino acid transporter B0AT1 (SLC6A19). Electrophysiological characterization of leucine-induced currents demonstrated that the observed signals were specific to B0AT1. Moreover, B0AT1-dependent responses were successfully inhibited using an established in-house tool compound. Evaluation of current stability and data reproducibility verified the robustness and reliability of the applied assay. Active compounds from primary screens of large compound libraries were validated, and false-positive hits were identified. These results clearly demonstrate the suitability of the SSM-based technique as a direct electrophysiological method for rapid and automated identification of small molecules that can inhibit B0AT1 activity.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Fenômenos Eletrofisiológicos , Ensaios de Triagem em Larga Escala/métodos , Sistemas de Transporte de Aminoácidos Neutros/agonistas , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Animais , Bioensaio/métodos , Transporte Biológico/efeitos dos fármacos , Células CHO , Membrana Celular/metabolismo , Cricetulus , Humanos , Camundongos , Técnicas de Patch-Clamp/métodos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
5.
J Biomol Screen ; 9(5): 409-16, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15296640

RESUMO

In this study, the authors have compared the performance of 2 high-throughput screening assays for a serin/threonine kinase: a microplate-based, bioluminescent assay that uses the luciferin/luciferase system to monitor ATP consumption, and a microfluidic assay that measures the change in mobility in an electric field of a fluorescently labeled peptide upon phosphorylation. Both assays are homogeneous, nonradioactive, antibody independent and could be miniaturized to a reaction volume of 4 microl. The robustness of both formats was demonstrated by Z' values > 0.8. Screening of a small library (2133 compounds) showed that the results obtained with both technologies correlate very well. Although the threshold for hits was set to a comparably low value-22.2% and 13.7% inhibition for the ATP consumption and microfluidic assay, respectively, corresponding to mean plus 3 standard deviations-the overlap of active compounds identified with the 2 assay formats was greater than 94%. Thus, both assays allow the identification of even low potency inhibitors with a high level of confidence.


Assuntos
Anticorpos/metabolismo , Medições Luminescentes , Microfluídica , Fosfotransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...