Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 6(3)2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28246076

RESUMO

BACKGROUND: Endothelial dysfunction contributes significantly to the development of vascular diseases. However, a therapy able to reduce this derangement still needs to be identified. We evaluated the effects of pharmacological inhibition of Rac1, a small GTPase protein promoting oxidative stress, in human endothelial dysfunction. METHODS AND RESULTS: We performed vascular reactivity studies to test the effects of NSC23766, a Rac1 inhibitor, on endothelium-dependent vasorelaxation of saphenous vein segments collected from 85 subjects who had undergone surgery for venous insufficiency and from 11 patients who had undergone peripheral vascular surgery. The endothelium-dependent vasorelaxation of the varicose segments of saphenous veins collected from patients with venous insufficiency was markedly impaired and was also significantly lower than that observed in control nonvaricose vein tracts from the same veins. Rac1 activity, reactive oxygen species levels, and reduced nicotine adenine dinucleotide phosphate (NADPH) oxidase activity were significantly increased in varicose veins, and NSC23766 was able to significantly improve endothelium-dependent vasorelaxation of dysfunctional saphenous vein portions in a nitric oxide-dependent manner. These effects were paralleled by a significant reduction of NADPH oxidase activity and activation of endothelial nitric oxide synthase. Finally, we further corroborated this data by demonstrating that Rac1 inhibition significantly improves venous endothelial function and reduces NADPH oxidase activity in saphenous vein grafts harvested from patients with vascular diseases undergoing peripheral bypass surgery. CONCLUSIONS: Rac1 pharmacological inhibition rescues endothelial function and reduces oxidative stress in dysfunctional veins. Rac1 inhibition may represent a potential therapeutic intervention to reduce human endothelial dysfunction and subsequently vascular diseases in various clinical settings.


Assuntos
Aminoquinolinas/farmacologia , Endotélio Vascular/fisiopatologia , Pirimidinas/farmacologia , Veia Safena/fisiopatologia , Vasodilatação/efeitos dos fármacos , Insuficiência Venosa/fisiopatologia , Proteínas rac1 de Ligação ao GTP/biossíntese , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , NADP/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Veia Safena/efeitos dos fármacos , Veia Safena/metabolismo , Insuficiência Venosa/metabolismo , Adulto Jovem , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
2.
Hypertension ; 62(2): 359-66, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23753407

RESUMO

Epidemiological studies have demonstrated that the Mediterranean diet, which is rich in resveratrol, is associated with a significantly reduced risk of cardiovascular disease. However, the molecular mechanisms that underlie the beneficial effects of resveratrol on cardiovascular function remain incompletely understood. Therefore, we set out to identify the molecular target(s) mediating the protective action of resveratrol on vascular function. To this end, we performed vascular reactivity studies to evaluate the effects of resveratrol on superior thyroid artery obtained from 59 patients with hypertension and dyslipidemia. We found that resveratrol evoked vasorelaxation and reduced endothelial dysfunction through the modulation of NO metabolism via (1) an 5' adenosine monophosphate-activated protein kinase-mediated increase in endothelial NO synthase activity; (2) a rise in tetrahydrobiopterin levels, which also increases endothelial NO synthase activity; and (3) attenuation of vascular oxidative stress, brought about by overexpression of manganese superoxide dismutase via an nuclear factor erythroid-derived 2-like 2-dependent mechanism. The effects of resveratrol on acetylcholine vasorelaxation were also tested in vessels from patients with nonhypertensive nondyslipidemia undergoing thyroid surgery. In this setting, resveratrol failed to exert any effect. Thus, our finding that resveratrol reduces endothelial dysfunction, an early pathophysiological feature and independent predictor of poor prognosis in most forms of cardiovascular disease, supports the concept that the risk of vascular events could be further reduced by adherence to a set of dietary and behavioral guidelines.


Assuntos
Dislipidemias/fisiopatologia , Hipertensão/fisiopatologia , Óxido Nítrico/metabolismo , Estilbenos/farmacologia , Vasodilatação/efeitos dos fármacos , Acetilcolina/farmacologia , Biopterinas/análogos & derivados , Biopterinas/sangue , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fator 2 Relacionado a NF-E2/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Resveratrol , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...