Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(9): 5578-5589, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175255

RESUMO

Graphene materials exhibit extraordinary properties, but are difficult to produce. The present work describes the possibility of using a plasma process to exfoliate and functionalize graphite flakes. An impulse plasma phase is generated at a liquid surface to produce chemical species and shock waves in order to modify the reactive liquid as well as the graphite flakes. With this process, industrial graphite was treated. 20% thickness diminution was observed, and the formation of a random turbostratic structure. The exfoliation occurs with small amount of functionalization of the surface. Even after treatment, the graphite flakes present a low defect density compared with other treated graphite obtained by more conventional chemical treatments. This process is a new way to exfoliate graphite and to produce functionalized graphenic materials.

2.
Polymers (Basel) ; 13(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925323

RESUMO

The structure of self-reinforced composites (SRCs) based on ultra-high molecular weight polyethylene (UHMWPE) was studied by means of Wide-Angle X-ray Scattering (WAXS), X-ray tomography, Raman spectroscopy, Scanning Electron Microscopy (SEM) and in situ tensile testing in combination with advanced processing tools to determine the correlation between the processing conditions, on one hand, and the molecular structure and mechanical properties, on the other. SRCs were fabricated by hot compaction of UHMWPE fibers at different pressure and temperature combinations without addition of polymer matrix or softener. It was found by WAXS that higher compaction temperatures led to more extensive melting of fibers with the corresponding reduction of the Herman's factor reflecting the degree of molecular orientation, while the increase of hot compaction pressure suppressed the melting of fibers within SRCs at a given temperature. X-ray tomography proved the absence of porosity while polarized light Raman spectroscopy measurements for both longitudinal and perpendicular fiber orientations showed qualitatively the anisotropy of SRC samples. SEM revealed that the matrix was formed by interlayers of molten polymer entrapped between fibers in SRCs. Moreover, in situ tensile tests demonstrated the increase of Young's modulus and tensile strength with increasing temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...