Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(4): e0353623, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38436569

RESUMO

The oral commensal Fusobacterium nucleatum can spread to extra-oral sites, where it is associated with diverse pathologies, including pre-term birth and cancer. Due to the evolutionary distance of F. nucleatum to other model bacteria, we lack a deeper understanding of the RNA regulatory networks that allow this bacterium to adapt to its various niches. As a first step in that direction, we recently showed that F. nucleatum harbors a global stress response governed by the extracytoplasmic function sigma factor, σE, which displays a striking functional conservation with Proteobacteria and includes a noncoding arm in the form of a regulatory small RNA (sRNA), FoxI. To search for putative additional σE-dependent sRNAs, we comprehensively mapped the 5' and 3' ends of transcripts in the model strain ATCC 23726. This enabled the discovery of FoxJ, a ~156-nucleotide sRNA previously misannotated as the 5' untranslated region (UTR) of ylmH. FoxJ is tightly controlled by σE and activated by the same stress conditions as is FoxI. Both sRNAs act as mRNA repressors of the abundant porin FomA, but FoxJ also regulates genes that are distinct from the target suite of FoxI. Moreover, FoxJ differs from other σE-dependent sRNAs in that it also positively regulates genes at the post-transcriptional level. We provide preliminary evidence for a new mode of sRNA-mediated mRNA activation, which involves the targeting of intra-operonic terminators. Overall, our study provides an important resource through the comprehensive annotation of 5' and 3' UTRs in F. nucleatum and expands our understanding of the σE response in this evolutionarily distant bacterium.IMPORTANCEThe oral microbe Fusobacterium nucleatum can colonize secondary sites, including cancer tissue, and likely deploys complex regulatory systems to adapt to these new environments. These systems are largely unknown, partly due to the phylogenetic distance of F. nucleatum to other model organisms. Previously, we identified a global stress response mediated by σE that displays functional conservation with the envelope stress response in Proteobacteria, comprising a coding and noncoding regulatory arm. Through global identification of transcriptional start and stop sites, we uncovered the small RNA (sRNA) FoxJ as a novel component of the noncoding arm of the σE response in F. nucleatum. Together with its companion sRNA FoxI, FoxJ post-transcriptionally modulates the synthesis of envelope proteins, revealing a conserved function for σE-dependent sRNAs between Fusobacteriota and Proteobacteria. Moreover, FoxJ activates the gene expression for several targets, which is a mode of regulation previously unseen in the noncoding arm of the σE response.


Assuntos
Neoplasias , Pequeno RNA não Traduzido , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Transcriptoma , Filogenia , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Bactérias/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Nucleic Acids Res ; 52(7): 3950-3970, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38281181

RESUMO

The common oral microbe Fusobacterium nucleatum has recently drawn attention after it was found to colonize tumors throughout the human body. Fusobacteria are also interesting study systems for bacterial RNA biology as these early-branching species encode many small noncoding RNAs (sRNAs) but lack homologs of the common RNA-binding proteins (RBPs) CsrA, Hfq and ProQ. To search for alternate sRNA-associated RBPs in F. nucleatum, we performed a systematic mass spectrometry analysis of proteins that co-purified with 19 different sRNAs. This approach revealed strong enrichment of the KH domain proteins KhpA and KhpB with nearly all tested sRNAs, including the σE-dependent sRNA FoxI, a regulator of several envelope proteins. KhpA/B act as a dimer to bind sRNAs with low micromolar affinity and influence the stability of several of their target transcripts. Transcriptome studies combined with biochemical and genetic analyses suggest that KhpA/B have several physiological functions, including being required for ethanolamine utilization. Our RBP search and the discovery of KhpA/B as major RBPs in F. nucleatum are important first steps in identifying key players of post-transcriptional control at the root of the bacterial phylogenetic tree.


Assuntos
Proteínas de Bactérias , Fusobacterium nucleatum , RNA Bacteriano , Pequeno RNA não Traduzido , Proteínas de Ligação a RNA , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Pequeno RNA não Traduzido/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/química , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Ligação Proteica , Espectrometria de Massas
3.
Proc Natl Acad Sci U S A ; 119(40): e2201460119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161895

RESUMO

Fusobacterium nucleatum, long known as a common oral microbe, has recently garnered attention for its ability to colonize tissues and tumors elsewhere in the human body. Clinical and epidemiological research has now firmly established F. nucleatum as an oncomicrobe associated with several major cancer types. However, with the current research focus on host associations, little is known about gene regulation in F. nucleatum itself, including global stress-response pathways that typically ensure the survival of bacteria outside their primary niche. This is due to the phylogenetic distance of Fusobacteriota to most model bacteria, their limited genetic tractability, and paucity of known gene functions. Here, we characterize a global transcriptional stress-response network governed by the extracytoplasmic function sigma factor, σE. To this aim, we developed several genetic tools for this anaerobic bacterium, including four different fluorescent marker proteins, inducible gene expression, scarless gene deletion, and transcriptional and translational reporter systems. Using these tools, we identified a σE response partly reminiscent of phylogenetically distant Proteobacteria but induced by exposure to oxygen. Although F. nucleatum lacks canonical RNA chaperones, such as Hfq, we uncovered conservation of the noncoding arm of the σE response in form of the noncoding RNA FoxI. This regulatory small RNA acts as an mRNA repressor of several membrane proteins, thereby supporting the function of σE. In addition to the characterization of a global stress response in F. nucleatum, the genetic tools developed here will enable further discoveries and dissection of regulatory networks in this early-branching bacterium.


Assuntos
Fusobacterium nucleatum , Regulação Bacteriana da Expressão Gênica , Fator sigma , Estresse Fisiológico , Fusobacterium nucleatum/classificação , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/fisiologia , Genes Reporter , Fator Proteico 1 do Hospedeiro/genética , Proteínas Luminescentes/genética , Proteínas de Membrana/genética , Oxigênio , Filogenia , RNA Mensageiro/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fator sigma/genética , Fator sigma/fisiologia , Estresse Fisiológico/genética
4.
FEMS Microbiol Rev ; 46(5)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35388892

RESUMO

Over the past two decades, small noncoding RNAs (sRNAs) that regulate mRNAs by short base pairing have gone from a curiosity to a major class of post-transcriptional regulators in bacteria. They are integral to many stress responses and regulatory circuits, affecting almost all aspects of bacterial life. Following pioneering sRNA searches in the early 2000s, the field quickly focused on conserved sRNA genes in the intergenic regions of bacterial chromosomes. Yet, it soon emerged that there might be another rich source of bacterial sRNAs-processed 3' end fragments of mRNAs. Several such 3' end-derived sRNAs have now been characterized, often revealing unexpected, conserved functions in diverse cellular processes. Here, we review our current knowledge of these 3' end-derived sRNAs-their biogenesis through ribonucleases, their molecular mechanisms, their interactions with RNA-binding proteins such as Hfq or ProQ and their functional scope, which ranges from acting as specialized regulators of single metabolic genes to constituting entire noncoding arms in global stress responses. Recent global RNA interactome studies suggest that the importance of functional 3' end-derived sRNAs has been vastly underestimated and that this type of cross-regulation between genes at the mRNA level is more pervasive in bacteria than currently appreciated.


Assuntos
RNA Bacteriano , Pequeno RNA não Traduzido , Bactérias/genética , Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
5.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769222

RESUMO

Compelling evidence suggests that pyroglutamate-modified Aß (pGlu3-Aß; AßN3pG) peptides play a pivotal role in the development and progression of Alzheimer's disease (AD). Approaches targeting pGlu3-Aß by glutaminyl cyclase (QC) inhibition (Varoglutamstat) or monoclonal antibodies (Donanemab) are currently in clinical development. Here, we aimed at an assessment of combination therapy of Varoglutamstat (PQ912) and a pGlu3-Aß-specific antibody (m6) in transgenic mice. Whereas the single treatments at subtherapeutic doses show moderate (16-41%) but statistically insignificant reduction of Aß42 and pGlu-Aß42 in mice brain, the combination of both treatments resulted in significant reductions of Aß by 45-65%. Evaluation of these data using the Bliss independence model revealed a combination index of ≈1, which is indicative for an additive effect of the compounds. The data are interpreted in terms of different pathways, in which the two drugs act. While PQ912 prevents the formation of pGlu3-Aß in different compartments, the antibody is able to clear existing pGlu3-Aß deposits. The results suggest that combination of the small molecule Varoglutamstat and a pE3Aß-directed monoclonal antibody may allow a reduction of the individual compound doses while maintaining the therapeutic effect.


Assuntos
Doença de Alzheimer , Aminoaciltransferases/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais Murinos/farmacologia , Benzimidazóis/farmacologia , Imidazolinas/farmacologia , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Humanos , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética
6.
RNA ; 27(12): 1512-1527, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34497069

RESUMO

The FinO-domain protein ProQ belongs to a widespread family of RNA-binding proteins (RBPs) involved in gene regulation in bacterial chromosomes and mobile elements. While the cellular RNA targets of ProQ have been established in diverse bacteria, the functionally crucial ProQ residues remain to be identified under physiological conditions. Following our discovery that ProQ deficiency alleviates growth suppression of Salmonella with succinate as the sole carbon source, an experimental evolution approach was devised to exploit this phenotype. By coupling mutational scanning with loss-of-function selection, we identified multiple ProQ residues in both the amino-terminal FinO domain and the variable carboxy-terminal region that are required for ProQ activity. Two carboxy-terminal mutations abrogated ProQ function and mildly impaired binding of a model RNA target. In contrast, several mutations in the FinO domain rendered ProQ both functionally inactive and unable to interact with target RNA in vivo. Alteration of the FinO domain stimulated the rapid turnover of ProQ by Lon-mediated proteolysis, suggesting a quality control mechanism that prevents the accumulation of nonfunctional ProQ molecules. We extend this observation to Hfq, the other major sRNA chaperone of enteric bacteria. The Hfq Y55A mutant protein, defective in RNA-binding and oligomerization, proved to be labile and susceptible to degradation by Lon. Taken together, our findings connect the major AAA+ family protease Lon with RNA-dependent quality control of Hfq and ProQ, the two major sRNA chaperones of Gram-negative bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Mutagênese , Protease La/metabolismo , Controle de Qualidade , RNA Bacteriano/genética , Proteínas de Ligação a RNA/metabolismo , Salmonella enterica/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a RNA/genética , Salmonella enterica/genética , Salmonella enterica/crescimento & desenvolvimento
7.
Nat Microbiol ; 6(8): 1007-1020, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34239075

RESUMO

Fusobacterium nucleatum, long known as a constituent of the oral microflora, has recently garnered renewed attention for its association with several different human cancers. The growing interest in this emerging cancer-associated bacterium contrasts with a paucity of knowledge about its basic gene expression features and physiological responses. As fusobacteria lack all established small RNA-associated proteins, post-transcriptional networks in these bacteria are also unknown. In the present study, using differential RNA-sequencing, we generate high-resolution global RNA maps for five clinically relevant fusobacterial strains-F. nucleatum subspecies nucleatum, animalis, polymorphum and vincentii, as well as F. periodonticum-for early, mid-exponential growth and early stationary phase. These data are made available in an online browser, and we use these to uncover fundamental aspects of fusobacterial gene expression architecture and a suite of non-coding RNAs. Developing a vector for functional analysis of fusobacterial genes, we discover a conserved fusobacterial oxygen-induced small RNA, FoxI, which serves as a post-transcriptional repressor of the major outer membrane porin FomA. Our findings provide a crucial step towards delineating the regulatory networks enabling F. nucleatum adaptation to different environments, which may elucidate how these bacteria colonize different compartments of the human body.


Assuntos
Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/genética , Neoplasias/microbiologia , RNA Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fusobacterium nucleatum/classificação , Fusobacterium nucleatum/crescimento & desenvolvimento , Fusobacterium nucleatum/fisiologia , Humanos , Porinas/genética , Porinas/metabolismo , RNA Bacteriano/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34131082

RESUMO

The gram-positive human pathogen Clostridioides difficile has emerged as the leading cause of antibiotic-associated diarrhea. However, little is known about the bacterium's transcriptome architecture and mechanisms of posttranscriptional control. Here, we have applied transcription start site and termination mapping to generate a single-nucleotide-resolution RNA map of C. difficile 5' and 3' untranslated regions, operon structures, and noncoding regulators, including 42 sRNAs. Our results indicate functionality of many conserved riboswitches and predict cis-regulatory RNA elements upstream of multidrug resistance (MDR)-type ATP-binding cassette (ABC) transporters and transcriptional regulators. Despite growing evidence for a role of Hfq in RNA-based gene regulation in C. difficile, the functions of Hfq-based posttranscriptional regulatory networks in gram-positive pathogens remain controversial. Using Hfq immunoprecipitation followed by sequencing of bound RNA species (RIP-seq), we identify a large cohort of transcripts bound by Hfq and show that absence of Hfq affects transcript stabilities and steady-state levels. We demonstrate sRNA expression during intestinal colonization by C. difficile and identify infection-related signals impacting its expression. As a proof of concept, we show that the utilization of the abundant intestinal metabolite ethanolamine is regulated by the Hfq-dependent sRNA CDIF630nc_085. Overall, our study lays the foundation for understanding clostridial riboregulation with implications for the infection process and provides evidence for a global role of Hfq in posttranscriptional regulation in a gram-positive bacterium.


Assuntos
Clostridioides difficile/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , Regiões 5' não Traduzidas/genética , Clostridioides difficile/genética , Meio Ambiente , Etanolamina/metabolismo , Genoma Bacteriano , Ligantes , Chaperonas Moleculares/metabolismo , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Óperon/genética , Regiões Promotoras Genéticas/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Sítio de Iniciação de Transcrição , Terminação da Transcrição Genética , Transcriptoma/genética
9.
RNA Biol ; 18(8): 1099-1110, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33103565

RESUMO

As part of the ongoing renaissance of phage biology, more phage genomes are becoming available through DNA sequencing. However, our understanding of the transcriptome architecture that allows these genomes to be expressed during host infection is generally poor. Transcription start sites (TSSs) and operons have been mapped for very few phages, and an annotated global RNA map of a phage - alone or together with its infected host - is not available at all. Here, we applied differential RNA-seq (dRNA-seq) to study the early, host takeover phase of infection by assessing the transcriptome structure of Pseudomonas aeruginosa jumbo phage ɸKZ, a model phage for viral genetics and structural research. This map substantially expands the number of early expressed viral genes, defining TSSs that are active ten minutes after ɸKZ infection. Simultaneously, we record gene expression changes in the host transcriptome during this critical metabolism conversion. In addition to previously reported upregulation of genes associated with amino acid metabolism, we observe strong activation of genes with functions in biofilm formation (cdrAB) and iron storage (bfrB), as well as an activation of the antitoxin ParD. Conversely, ɸKZ infection rapidly down-regulates complexes IV and V of oxidative phosphorylation (atpCDGHF and cyoABCDE). Taken together, our data provide new insights into the transcriptional organization and infection process of the giant bacteriophage ɸKZ and adds a framework for the genome-wide transcriptomic analysis of phage-host interactions.


Assuntos
Antibiose/genética , Regulação Bacteriana da Expressão Gênica , Regulação Viral da Expressão Gênica , Genoma Viral , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/genética , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Mapeamento Cromossômico , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ontologia Genética , Anotação de Sequência Molecular , Fagos de Pseudomonas/crescimento & desenvolvimento , Fagos de Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/virologia , RNA Viral/genética , RNA Viral/metabolismo , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição , Transcriptoma
10.
Nat Commun ; 11(1): 3259, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591509

RESUMO

Fusobacterium nucleatum is an oral anaerobe recently found to be prevalent in human colorectal cancer (CRC) where it is associated with poor treatment outcome. In mice, hematogenous F. nucleatum can colonize CRC tissue using its lectin Fap2, which attaches to tumor-displayed Gal-GalNAc. Here, we show that Gal-GalNAc levels increase as human breast cancer progresses, and that occurrence of F. nucleatum gDNA in breast cancer samples correlates with high Gal-GalNAc levels. We demonstrate Fap2-dependent binding of the bacterium to breast cancer samples, which is inhibited by GalNAc. Intravascularly inoculated Fap2-expressing F. nucleatum ATCC 23726 specifically colonize mice mammary tumors, whereas Fap2-deficient bacteria are impaired in tumor colonization. Inoculation with F. nucleatum suppresses accumulation of tumor infiltrating T cells and promotes tumor growth and metastatic progression, the latter two of which can be counteracted by antibiotic treatment. Thus, targeting F. nucleatum or Fap2 might be beneficial during treatment of breast cancer.


Assuntos
Neoplasias da Mama/microbiologia , Neoplasias da Mama/patologia , Progressão da Doença , Fusobacterium nucleatum/crescimento & desenvolvimento , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Modelos Animais de Doenças , Feminino , Fusobacterium nucleatum/efeitos dos fármacos , Fusobacterium nucleatum/genética , Galactosamina/metabolismo , Galactose/metabolismo , Genoma Bacteriano/genética , Humanos , Imunidade/efeitos dos fármacos , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...