Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1003907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237505

RESUMO

Potato is a drought-sensitive crop whose global sustainable production is threatened by alterations in water availability. Whilst ancestral Solanum tuberosum Andigenum landraces retain wild drought tolerance mechanisms, their molecular bases remain poorly understood. In this study, an aeroponic growth system was established to investigate stress responses in leaf and root of two Andigenum varieties with contrasting drought tolerance. Comparative transcriptome analysis revealed widespread differences in the response of the two varieties at early and late time points of exposure to drought stress and in the recovery after rewatering. Major differences in the response of the two varieties occurred at the early time point, suggesting the speed of response is crucial. In the leaves and roots of the tolerant variety, we observed rapid upregulation of ABA-related genes, which did not occur until later in the susceptible variety and indicated not only more effective ABA synthesis and mobilization, but more effective feedback regulation to limit detrimental effects of too much ABA. Roots of both varieties showed differential expression of genes involved in cell wall reinforcement and remodeling to maintain cell wall strength, hydration and growth under drought stress, including genes involved in lignification and wall expansion, though the response was stronger in the tolerant variety. Such changes in leaf and root may help to limit water losses in the tolerant variety, while limiting the reduction in photosynthetic rate. These findings provide insights into molecular bases of drought tolerance mechanisms and pave the way for their reintroduction into modern cultivars with improved resistance to drought stress and yield stability under drought conditions.

2.
Heredity (Edinb) ; 125(4): 212-226, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523055

RESUMO

Naturally occurring autopolyploid species, such as the autotetraploid potato Solanum tuberosum, face a variety of challenges during meiosis. These include proper pairing, recombination and correct segregation of multiple homologous chromosomes, which can form complex multivalent configurations at metaphase I, and in turn alter allelic segregation ratios through double reduction. Here, we present a reference map of meiotic stages in diploid and tetraploid S. tuberosum using fluorescence in situ hybridisation (FISH) to differentiate individual meiotic chromosomes 1 and 2. A diploid-like behaviour at metaphase I involving bivalent configurations was predominant in all three tetraploid varieties. The crossover frequency per bivalent was significantly reduced in the tetraploids compared with a diploid variety, which likely indicates meiotic adaptation to the autotetraploid state. Nevertheless, bivalents were accompanied by a substantial frequency of multivalents, which varied by variety and by chromosome (7-48%). We identified possible sites of synaptic partner switching, leading to multivalent formation, and found potential defects in the polymerisation and/or maintenance of the synaptonemal complex in tetraploids. These findings demonstrate the rise of S. tuberosum as a model for autotetraploid meiotic recombination research and highlight constraints on meiotic chromosome configurations and chiasma frequencies as an important feature of an evolved autotetraploid meiosis.


Assuntos
Meiose , Solanum tuberosum , Cromossomos de Plantas/genética , Diploide , Variação Genética , Solanum tuberosum/genética , Tetraploidia
3.
Rev. peru. biol. (Impr.) ; 27(1): 27-34, ene.-mar 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1144927

RESUMO

Abstract Globodera pallida is a white potato cyst nematode present in the Andes, which causes huge losses to Peruvian farmers. An RNA-seq analysis allowed the identification of candidate genes that could mediate resistance against this pathogen. Two varieties, "María Huanca" (Solanum andigena) clone resistant (CIP 279142.12) and "Chimbina Colorada" (Solanum chaucha) (CIP 701013) clone susceptible to G. pallida, were used to identify differentially expressed genes. Total RNA from roots was extracted 72 hours post inoculation with second stage juveniles. Sequencing was done using the Illumina Hiseq 2500 platform. Reads were screened for quality issues and then mapped to the reference potato genome (clone DM1-3516 R44 v4.03). Here, we report 27717 and 27750 genes expressed in the resistant and susceptible variety respectively. The comparative analysis of expression identified 100 candidate genes. 91 genes were associated with resistance to G. pallida with Fold Change ≥ 2 (p <0.05). The remaining 9 R genes had Fold Change ≤ 1. We show differences in the expression of an NBS-LRR protein similar to Gro1-8, genes linked to late blight and TMV virus resistance.


Resumen Globodera pallida es un nemátodo formador de quistes. En la papa (Solanum tuberosum) ocasiona daños atrofiando las raíces. En los Andes peruanos ocasiona grandes pérdidas económicas a los agricultores. A través del análisis por RNA-seq, se identificaron genes candidatos que podrían mediar la resistencia contra este nemátodo. Dos variedades de papa: "María Huanca" (S. andigena) clon resistente (CIP 279142.12) y "Chimbina Colorada" (S. chaucha) clon susceptible (CIP 701013) a G. pallida, fueron utilizados para identificar genes expresados diferencialmente. Las raíces fueron inoculadas con G. pallida en segundo estadío juvenil (J2). El ARN total fue extraído a 72 horas post inoculación. El secuenciamiento fue realizado en plataforma Illumina HiSeq 2500. Las lecturas de buena calidad fueron mapeadas al genoma de referencia de S. tuberosum (clon DM1-3516 R44 v4.03). Reportamos 27717 y 27750 genes expresados en la variedad resistente y susceptible, respectivamente. El análisis comparativo identificó 100 genes candidatos, de ellos 91 genes fueron asociados con la resistencia a G. pallida (Fold Change ≥ 2 , p <0.05) y los 9 restantes con genes R ( Fold Change ≤ 1). En este último grupo se observaron diferencias en la expresión de genes NBS-LRR similar a Gro 1-8, genes relacionados a late blight y resistencia al Virus TMV.

4.
Environ Sci Pollut Res Int ; 25(34): 33957-33966, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30280335

RESUMO

Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50-49.80 mg/kg), Cu (159.50-1187.00 mg/kg), Ni (3.50-8.70 mg/kg), Pb (1707.00-4243.00 mg/kg), and Zn (909.00-7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region.


Assuntos
Metais Pesados/farmacocinética , Plantas/efeitos dos fármacos , Poluentes do Solo/farmacocinética , Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos , Metais Pesados/análise , Mineração , Peru , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Plantas/metabolismo , Poluentes do Solo/análise
6.
G3 (Bethesda) ; 3(11): 2031-47, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24062527

RESUMO

The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker-based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal "pseudomolecules".


Assuntos
Mapeamento Cromossômico/normas , Cromossomos de Plantas/genética , Solanum tuberosum/genética , Biomarcadores/metabolismo , Cromossomos de Plantas/metabolismo , Genoma de Planta , Internet , Interface Usuário-Computador
7.
PLoS One ; 7(4): e34775, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22493716

RESUMO

The majority of disease resistance (R) genes identified to date in plants encode a nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain containing protein. Additional domains such as coiled-coil (CC) and TOLL/interleukin-1 receptor (TIR) domains can also be present. In the recently sequenced Solanum tuberosum group phureja genome we used HMM models and manual curation to annotate 435 NBS-encoding R gene homologs and 142 NBS-derived genes that lack the NBS domain. Highly similar homologs for most previously documented Solanaceae R genes were identified. A surprising ∼41% (179) of the 435 NBS-encoding genes are pseudogenes primarily caused by premature stop codons or frameshift mutations. Alignment of 81.80% of the 577 homologs to S. tuberosum group phureja pseudomolecules revealed non-random distribution of the R-genes; 362 of 470 genes were found in high density clusters on 11 chromosomes.


Assuntos
Resistência à Doença/genética , Genoma de Planta , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas/genética , Solanum tuberosum/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Mapeamento Cromossômico , Cromossomos de Plantas , Sequência Conservada , Resistência à Doença/imunologia , Estudo de Associação Genômica Ampla , Proteínas de Repetições Ricas em Leucina , Dados de Sequência Molecular , Família Multigênica , Nucleotídeos/metabolismo , Filogenia , Doenças das Plantas/imunologia , Proteínas de Plantas/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Pseudogenes/genética , Homologia de Sequência de Aminoácidos
8.
Nature ; 475(7355): 189-95, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743474

RESUMO

Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.


Assuntos
Genoma de Planta/genética , Genômica , Solanum tuberosum/genética , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Variação Genética , Haplótipos/genética , Heterozigoto , Homozigoto , Imunidade Inata , Endogamia , Anotação de Sequência Molecular , Dados de Sequência Molecular , Doenças das Plantas/genética , Ploidias , Solanum tuberosum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...