Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Res ; 99(9): 2046-2058, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34048600

RESUMO

Digging behavior is often used to test motor function and repetitive behaviors in mice. Different digging paradigms have been developed for behaviors related to anxiety and compulsion in mouse lines generated to recapitulate genetic mutations leading to psychiatric and neurological disorders. However, the interpretation of these tests has been confounded by the difficulty of determining the motivation behind digging in mice. Digging is a naturalistic mouse behavior that can be focused toward different goals, that is foraging for food, burrowing for shelter, burying objects, or even for recreation as has been shown for dogs, ferrets, and human children. However, the interpretation of results from current testing protocols assumes the motivation behind the behavior often concluding that increased digging is a repetitive or compulsive behavior. We asked whether providing a choice between different types of digging activities would increase sensitivity to assess digging motivation. Here, we present a test to distinguish between burrowing and exploratory digging in mice. We found that mice prefer burrowing when the option is available. When food restriction was used to promote a switch from burrowing to exploration, males readily switched from burrowing to digging outside, while females did not. In addition, when we tested a model of intellectual disability and autism spectrum disorder that had shown inconsistent results in the marble burying test, the Cc2d1a conditional knockout mouse, we found greatly reduced burrowing only in males. Our findings indicate that digging is a nuanced motivated behavior and suggest that male and female rodents may perform it differently.


Assuntos
Aprendizagem por Discriminação/fisiologia , Comportamento Exploratório/fisiologia , Privação de Alimentos/fisiologia , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Biol Psychiatry ; 85(9): 760-768, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30732858

RESUMO

BACKGROUND: The prevalence of neurodevelopmental disorders is biased toward male individuals, with male-to-female ratios of 2:1 in intellectual disability and 4:1 in autism spectrum disorder. However, the molecular mechanisms of such bias remain unknown. While characterizing a mouse model for loss of the signaling scaffold coiled-coil and C2 domain-containing protein 1A (CC2D1A), which is mutated in intellectual disability and autism spectrum disorder, we identified biochemical and behavioral differences between male and female mice, and explored whether CC2D1A controls male-specific intracellular signaling. METHODS: CC2D1A is known to regulate phosphodiesterase 4D (PDE4D), which regulates cyclic adenosine monophosphate (cAMP) signaling. We tested for activation of PDE4D and downstream signaling molecules in the hippocampus of Cc2d1a-deficient mice. We then performed behavioral studies in female mice to analyze learning and memory, and then targeted PDE4D activation with a PDE4D inhibitor to define how changes in cAMP levels affect behavior in male and female mice. RESULTS: We found that in Cc2d1a-deficient male mice PDE4D is hyperactive, leading to a reduction in cAMP response element binding protein signaling, but this molecular deficit is not present in female mice. Cc2d1a-deficient male mice show a deficit in spatial memory, which is not present in Cc2d1a-deficient female mice. Restoring PDE4D activity using an inhibitor rescues cognitive deficits in male mice but has no effect on female mice. CONCLUSIONS: Our findings show that CC2D1A regulates cAMP intracellular signaling in a male-specific manner in the hippocampus, leading to male-specific cognitive deficits. We propose that male-specific signaling mechanisms are involved in establishing sex bias in neurodevelopmental disorders.


Assuntos
Transtorno Autístico/metabolismo , AMP Cíclico/metabolismo , Hipocampo/metabolismo , Deficiência Intelectual/metabolismo , Proteínas Repressoras/metabolismo , Memória Espacial/fisiologia , Animais , Transtorno Autístico/psicologia , Modelos Animais de Doenças , Feminino , Deficiência Intelectual/psicologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/genética , Caracteres Sexuais , Transdução de Sinais
3.
Front Genet ; 9: 65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29552027

RESUMO

Hundreds of genes are mutated in non-syndromic intellectual disability (ID) and autism spectrum disorder (ASD), with each gene often involved in only a handful of cases. Such heterogeneity can be daunting, but rare recessive loss of function (LOF) mutations can be a good starting point to provide insight into the mechanisms of neurodevelopmental disease. Biallelic LOF mutations in the signaling scaffold CC2D1A cause a rare form of autosomal recessive ID, sometimes associated with ASD and seizures. In parallel, we recently reported that Cc2d1a-deficient mice present with cognitive and social deficits, hyperactivity and anxiety. In Drosophila, loss of the only ortholog of Cc2d1a, lgd, is embryonically lethal, while in vertebrates, Cc2d1a has a homolog Cc2d1b which appears to be compensating, indicating that Cc2d1a and Cc2d1b have a redundant function in humans and mice. Here, we generate an allelic series of Cc2d1a and Cc2d1b LOF to determine the relative role of these genes during behavioral development. We generated Cc2d1b knockout (KO), Cc2d1a/1b double heterozygous and double KO mice, then performed behavioral studies to analyze learning and memory, social interactions, anxiety, and hyperactivity. We found that Cc2d1a and Cc2d1b have partially overlapping roles. Overall, loss of Cc2d1b is less severe than loss of Cc2d1a, only leading to cognitive deficits, while Cc2d1a/1b double heterozygous animals are similar to Cc2d1a-deficient mice. These results will help us better understand the deficits in individuals with CC2D1A mutations, suggesting that recessive CC2D1B mutations and trans-heterozygous CC2D1A and CC2D1B mutations could also contribute to the genetics of ID.

4.
Am J Hum Genet ; 100(3): 537-545, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28190459

RESUMO

Congenital muscular dystrophies display a wide phenotypic and genetic heterogeneity. The combination of clinical, biochemical, and molecular genetic findings must be considered to obtain the precise diagnosis and provide appropriate genetic counselling. Here we report five individuals from four families presenting with variable clinical features including muscular dystrophy with a reduction in dystroglycan glycosylation, short stature, intellectual disability, and cataracts, overlapping both the dystroglycanopathies and Marinesco-Sjögren syndrome. Whole-exome sequencing revealed homozygous missense and compound heterozygous mutations in INPP5K in the affected members of each family. INPP5K encodes the inositol polyphosphate-5-phosphatase K, also known as SKIP (skeletal muscle and kidney enriched inositol phosphatase), which is highly expressed in the brain and muscle. INPP5K localizes to both the endoplasmic reticulum and to actin ruffles in the cytoplasm. It has been shown to regulate myoblast differentiation and has also been implicated in protein processing through its interaction with the ER chaperone HSPA5/BiP. We show that morpholino-mediated inpp5k loss of function in the zebrafish results in shortened body axis, microphthalmia with disorganized lens, microcephaly, reduced touch-evoked motility, and highly disorganized myofibers. Altogether these data demonstrate that mutations in INPP5K cause a congenital muscular dystrophy syndrome with short stature, cataracts, and intellectual disability.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Monoéster Fosfórico Hidrolases/genética , Degenerações Espinocerebelares/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Criança , Modelos Animais de Doenças , Distroglicanas/metabolismo , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Feminino , Estudo de Associação Genômica Ampla , Glicosilação , Transtornos do Crescimento/genética , Humanos , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Músculo Esquelético/metabolismo , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra/genética
5.
Cereb Cortex ; 27(2): 1670-1685, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26826102

RESUMO

Loss-of-function (LOF) mutations in CC2D1A cause a spectrum of neurodevelopmental disorders, including intellectual disability, autism spectrum disorder, and seizures, identifying a critical role for this gene in cognitive and social development. CC2D1A regulates intracellular signaling processes that are critical for neuronal function, but previous attempts to model the human LOF phenotypes have been prevented by perinatal lethality in Cc2d1a-deficient mice. To overcome this challenge, we generated a floxed Cc2d1a allele for conditional removal of Cc2d1a in the brain using Cre recombinase. While removal of Cc2d1a in neuronal progenitors using Cre expressed from the Nestin promoter still causes death at birth, conditional postnatal removal of Cc2d1a in the forebrain via calcium/calmodulin-dependent protein kinase II-alpha (CamKIIa) promoter-driven Cre generates animals that are viable and fertile with grossly normal anatomy. Analysis of neuronal morphology identified abnormal cortical dendrite organization and a reduction in dendritic spine density. These animals display deficits in neuronal plasticity and in spatial learning and memory that are accompanied by reduced sociability, hyperactivity, anxiety, and excessive grooming. Cc2d1a conditional knockout mice therefore recapitulate features of both cognitive and social impairment caused by human CC2D1A mutation, and represent a model that could provide much needed insights into the developmental mechanisms underlying nonsyndromic neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Neurônios/citologia , Prosencéfalo/patologia , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Plasticidade Neuronal/genética , Proteínas Repressoras/deficiência , Transdução de Sinais/fisiologia
6.
Nat Commun ; 7: 10175, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26729507

RESUMO

The attachment of a sugar to a hydrophobic polyisoprenyl carrier is the first step for all extracellular glycosylation processes. The enzymes that perform these reactions, polyisoprenyl-glycosyltransferases (PI-GTs) include dolichol phosphate mannose synthase (DPMS), which generates the mannose donor for glycosylation in the endoplasmic reticulum. Here we report the 3.0 Å resolution crystal structure of GtrB, a glucose-specific PI-GT from Synechocystis, showing a tetramer in which each protomer contributes two helices to a membrane-spanning bundle. The active site is 15 Å from the membrane, raising the question of how water-soluble and membrane-embedded substrates are brought into apposition for catalysis. A conserved juxtamembrane domain harbours disease mutations, which compromised activity in GtrB in vitro and in human DPM1 tested in zebrafish. We hypothesize a role of this domain in shielding the polyisoprenyl-phosphate for transport to the active site. Our results reveal the basis of PI-GT function, and provide a potential molecular explanation for DPM1-related disease.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glicosiltransferases/metabolismo , Synechocystis/enzimologia , Animais , Animais Geneticamente Modificados , Glicosiltransferases/genética , Humanos , Manosiltransferases/genética , Manosiltransferases/metabolismo , Modelos Moleculares , Conformação Proteica , Peixe-Zebra
7.
Hum Mol Genet ; 23(21): 5781-92, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24925318

RESUMO

Dystroglycan is a transmembrane glycoprotein whose interactions with the extracellular matrix (ECM) are necessary for normal muscle and brain development, and disruptions of its function lead to dystroglycanopathies, a group of congenital muscular dystrophies showing extreme genetic and clinical heterogeneity. Specific glycans bound to the extracellular portion of dystroglycan, α-dystroglycan, mediate ECM interactions and most known dystroglycanopathy genes encode glycosyltransferases involved in glycan synthesis. POMK, which was found mutated in two dystroglycanopathy cases, is instead involved in a glycan phosphorylation reaction critical for ECM binding, but little is known about the clinical presentation of POMK mutations or of the function of this protein in the muscle. Here, we describe two families carrying different truncating alleles, both removing the kinase domain in POMK, with different clinical manifestations ranging from Walker-Warburg syndrome, the most severe form of dystroglycanopathy, to limb-girdle muscular dystrophy with cognitive defects. We explored POMK expression in fetal and adult human muscle and identified widespread expression primarily during fetal development in myocytes and interstitial cells suggesting a role for this protein during early muscle differentiation. Analysis of loss of function in the zebrafish embryo and larva showed that pomk function is necessary for normal muscle development, leading to locomotor dysfuction in the embryo and signs of muscular dystrophy in the larva. In summary, we defined diverse clinical presentations following POMK mutations and showed that this gene is necessary for early muscle development.


Assuntos
Estudos de Associação Genética , Desenvolvimento Muscular/genética , Mutação , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/genética , Fenótipo , Proteínas Quinases/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Distroglicanas/metabolismo , Exoma , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Estudo de Associação Genômica Ampla , Glicosilação , Humanos , Imageamento por Ressonância Magnética , Masculino , Dados de Sequência Molecular , Linhagem , Proteínas Quinases/química , Alinhamento de Sequência , Adulto Jovem , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...