Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Phycol ; 59(5): 939-949, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572353

RESUMO

Cryoconite, the dark sediment on the surface of glaciers, often aggregates into oval or irregular granules serving as biogeochemical factories. They reduce a glacier's albedo, act as biodiversity hotspots by supporting aerobic and anaerobic microbial communities, constitute one of the organic matter (OM) sources on glaciers, and are a feeder for micrometazoans. Although cryoconite granules have multiple roles on glaciers, their formation is poorly understood. Cyanobacteria are ubiquitous and abundant engineers of cryoconite hole ecosystems. This study tested whether cyanobacteria may be responsible for cryoconite granulation as a sole biotic element. Incubation of Greenlandic, Svalbard, and Scandinavian cyanobacteria in different nutrient availabilities and substrata for growth (distilled water alone and water with quartz powder, furnaced cryoconite without OM, or powdered rocks from glacial catchment) revealed that cyanobacteria bind mineral particles into granules. The structures formed in the experiment resembled those commonly observed in natural cryoconite holes: they contained numerous cyanobacterial filaments protruding from aggregated mineral particles. Moreover, all examined strains were confirmed to produce extracellular polymeric substances (EPS), which suggests that cryoconite granulation is most likely due to EPS secretion by gliding cyanobacteria. In the presence of water as the only substrate for growth, cyanobacteria formed mostly carpet-like mats. Our data empirically prove that EPS-producing oscillatorialean cyanobacteria isolated from the diverse community of cryoconite microorganisms can form granules from mineral substrate and that the presence of the mineral substrate increases the probability of the formation of these important and complex biogeochemical microstructures on glaciers.


Assuntos
Cianobactérias , Microbiota , Camada de Gelo/química , Camada de Gelo/microbiologia , Clima Frio , Cianobactérias/metabolismo , Minerais/metabolismo , Água
2.
Sci Total Environ ; 894: 164902, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343877

RESUMO

The accumulation of fallout radionuclides (FRNs) from nuclear weapons testing and nuclear accidents has been evaluated for over half a century in natural environments; however, until recently their distribution and abundance within glaciers have been poorly understood. Following a series of individual studies of FRNs, specifically 137Cs, 241Am and 210Pb, deposited on the surface of glaciers, we now understand that cryoconite, a material commonly found in the supraglacial environment, is a highly efficient accumulator of FRNs, both artificial and natural. However, the variability of FRN activity concentrations in cryoconite across the global cryosphere has never been assessed. This study thus aims to both synthesize current knowledge on FRNs in cryoconite and assess the controls on variability of activity concentrations. We present a global database of new and previously published data based on gamma spectrometry of cryoconite and proglacial sediments, and assess the extent to which a suite of environmental and physical factors can explain spatial variability in FRN activity concentrations in cryoconite. We show that FRNs are not only found in cryoconite on glaciers within close proximity to specific sources of radioactivity, but across the global cryosphere, and at activity concentrations up to three orders of magnitude higher than those found in soils and sediments in the surrounding environment. We also show that the organic content of cryoconite exerts a strong control on accumulation of FRNs, and that activity concentrations in cryoconite are some of the highest ever described in environmental matrices outside of nuclear exclusion zones, occasionally in excess of 10,000 Bq kg-1. These findings highlight a need for significant improvements in the understanding of the fate of legacy contaminants within glaciated catchments. Future interdisciplinary research is required on the mechanisms governing their accumulation, storage, and mobility, and their potential to create time-dependent impacts on downstream water quality and ecosystem sustainability.

3.
Microbiol Spectr ; : e0100422, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939373

RESUMO

Cryoconite holes are small ponds present on the surface of most glaciers filled with meltwater and sediment at the bottom. Although they are characterized by extreme conditions, they host bacterial communities with high taxonomic and functional biodiversity. Despite that evidence for a potential niche for anaerobic microorganisms and anaerobic processes has recently emerged, the composition of the microbial communities of the cryoconite reported so far has not shown the relevant presence of anaerobic taxa. We hypothesize that this is due to the lower growth yield of anaerobes compared to aerobic microorganisms. In this work, we aim at evaluating whether the anaerobic bacterial community represents a relevant fraction of the biodiversity of the cryoconite and at describing its structure and functions. We collected sediment samples from cryoconite holes on the Forni Glacier (Italy) and sequenced both 16S rRNA amplicon genes and 16S rRNA amplicon transcripts at different times of the day along a clear summer day. Results showed that a relevant fraction of taxa has been detected only by 16S rRNA transcripts and was undetectable in 16S rRNA gene amplicons. Furthermore, in the transcript approach, anaerobic taxa were overrepresented compared with DNA sequencing. The metatranscriptomics approach was used also to investigate the expression of the main metabolic functions. Results showed the occurrence of syntrophic and commensalism relationships among fermentative bacteria, hydrogenothrophs, and consumers of fermentation end products, which have never been reported so far in cryoconite. IMPORTANCE Recent evidence disclosed the presence of a potential niche for anaerobic microorganisms and anaerobic processes in supraglacial sediments (cryoconite), but a detailed description of the structure and functions of the anaerobic population is still lacking. This work used rRNA and mRNA sequencing and demonstrated that anaerobes are very active in these environments and represent a relevant albeit neglected part of the ecosystem functions in these environments.

4.
Sci Total Environ ; 807(Pt 2): 150874, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34627905

RESUMO

Cryoconite is a mixture of mineral and organic material covering glacial ice, playing important roles in biogeochemical cycles and lowering the albedo of a glacier surface. Understanding the differences in structure of cryoconite across the globe can be important in recognizing past and future changes in supraglacial environments and ice-organisms-minerals interactions. Despite the worldwide distribution and over a century of studies, the basic characteristics of cryoconite, including its forms and geochemistry, remain poorly studied. The major purpose of our study is the presentation and description of morphological diversity, chemical and photoautotrophs composition, and organic matter content of cryoconite sampled from 33 polar and mountain glaciers around the globe. Observations revealed that cryoconite is represented by various morphologies including loose and granular forms. Granular cryoconite includes smooth, rounded, or irregularly shaped forms; with some having their surfaces covered by cyanobacteria filaments. The occurrence of granules increased with the organic matter content in cryoconite. Moreover, a major driver of cryoconite colouring was the concentration of organic matter and its interplay with minerals. The structure of cyanobacteria and algae communities in cryoconite differs between glaciers, but representatives of cyanobacteria families Pseudanabaenaceae and Phormidiaceae, and algae families Mesotaeniaceae and Ulotrichaceae were the most common. The most of detected cyanobacterial taxa are known to produce polymeric substances (EPS) that may cement granules. Organic matter content in cryoconite varied between glaciers, ranging from 1% to 38%. The geochemistry of all the investigated samples reflected local sediment sources, except of highly concentrated Pb and Hg in cryoconite collected from European glaciers near industrialized regions, corroborating cryoconite as element-specific collector and potential environmental indicator of anthropogenic activity. Our work supports a notion that cryoconite may be more than just simple sediment and instead exhibits complex structure with relevance for biodiversity and the functioning of glacial ecosystems.


Assuntos
Efeitos Antropogênicos , Camada de Gelo , Ecossistema , Humanos , Minerais
5.
Front Microbiol ; 12: 738451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899626

RESUMO

Cryoconite holes, supraglacial depressions containing water and microbe-mineral aggregates, are known to be hotspots of microbial diversity on glacial surfaces. Cryoconite holes form in a variety of locations and conditions, which impacts both their structure and the community that inhabits them. Using high-throughput 16S and 18S rRNA gene sequencing, we have investigated the communities of a wide range of cryoconite holes from 15 locations across the Arctic and Antarctic. Around 24 bacterial and 11 eukaryotic first-rank phyla were observed in total. The various biotic niches (grazer, predator, photoautotroph, and chemotroph), are filled in every location. Significantly, there is a clear divide between the bacterial and microalgal communities of the Arctic and that of the Antarctic. We were able to determine the groups contributing to this difference and the family and genus level. Both polar regions contain a "core group" of bacteria that are present in the majority of cryoconite holes and each contribute >1% of total amplicon sequence variant (ASV) abundance. Whilst both groups contain Microbacteriaceae, the remaining members are specific to the core group of each polar region. Additionally, the microalgal communities of Arctic cryoconite holes are dominated by Chlamydomonas whereas the Antarctic cryoconite holes are dominated by Pleurastrum. Therefore cryoconite holes may be a global feature of glacier landscapes, but they are inhabited by regionally distinct microbial communities. Our results are consistent with the notion that cryoconite microbiomes are adapted to differing conditions within the cryosphere.

6.
Front Microbiol ; 11: 1783, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849402

RESUMO

Cryoconite holes are miniature freshwater aquatic ecosystems that harbor a relatively diverse microbial community. This microbial community can withstand the extreme conditions of the supraglacial environment, including fluctuating temperatures, extreme and varying geochemical conditions and limited nutrients. We analyzed the physiological capabilities of microbial isolates from cryoconite holes from Antarctica, Greenland, and Svalbard in selected environmental conditions: extreme pH, salinity, freeze-thaw and limited carbon sources, to identify their physiological limits. The results suggest that heterotrophic microorganisms in cryoconite holes are well adapted to fast-changing environmental conditions, by surviving multiple freeze-thaw cycles, a wide range of salinity and pH conditions and scavenging a variety of organic substrates. Under oxic and anoxic conditions, the communities grew well in temperatures up to 30°C, although in anoxic conditions the community was more successful at colder temperatures (0.2°C). The most abundant cultivable microorganisms were facultative anaerobic bacteria and yeasts. They grew in salinities up to 10% and in pH ranging from 4 to 10.5 (Antarctica), 2.5 to 10 (Svalbard), and 3 to 10 (Greenland). Their growth was sustained on at least 58 single carbon sources and there was no decrease in viability for some isolates after up to 100 consecutive freeze-thaw cycles. The elevated viability of the anaerobic community in the lowest temperatures indicates they might be key players in winter conditions or in early melt seasons, when the oxygen is potentially depleted due to limited flow of meltwater. Consequently, facultative anaerobic heterotrophs are likely important players in the reactivation of the community after the polar night. This detailed physiological investigation shows that despite inhabiting a freshwater environment, cryoconite microorganisms are able to withstand conditions not typically encountered in freshwater environments (namely high salinities or extreme pH), making them physiologically more similar to arid soil communities. The results also point to a possible resilience of the most abundant microorganisms of cryoconite holes in the face of rapid change regardless of the location.

7.
Proc Natl Acad Sci U S A ; 117(11): 5694-5705, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32094168

RESUMO

Blooms of Zygnematophycean "glacier algae" lower the bare ice albedo of the Greenland Ice Sheet (GrIS), amplifying summer energy absorption at the ice surface and enhancing meltwater runoff from the largest cryospheric contributor to contemporary sea-level rise. Here, we provide a step change in current understanding of algal-driven ice sheet darkening through quantification of the photophysiological mechanisms that allow glacier algae to thrive on and darken the bare ice surface. Significant secondary phenolic pigmentation (11 times the cellular content of chlorophyll a) enables glacier algae to tolerate extreme irradiance (up to ∼4,000 µmol photons⋅m-2⋅s-1) while simultaneously repurposing captured ultraviolet and short-wave radiation for melt generation. Total cellular energy absorption is increased 50-fold by phenolic pigmentation, while glacier algal chloroplasts positioned beneath shading pigments remain low-light-adapted (Ek ∼46 µmol photons⋅m-2⋅s-1) and dependent upon typical nonphotochemical quenching mechanisms for photoregulation. On the GrIS, glacier algae direct only ∼1 to 2.4% of incident energy to photochemistry versus 48 to 65% to ice surface melting, contributing an additional ∼1.86 cm water equivalent surface melt per day in patches of high algal abundance (∼104 cells⋅mL-1). At the regional scale, surface darkening is driven by the direct and indirect impacts of glacier algae on ice albedo, with a significant negative relationship between broadband albedo (Moderate Resolution Imaging Spectroradiometer [MODIS]) and glacier algal biomass (R2 = 0.75, n = 149), indicating that up to 75% of the variability in albedo across the southwestern GrIS may be attributable to the presence of glacier algae.


Assuntos
Camada de Gelo , Microalgas/fisiologia , Elevação do Nível do Mar , Retroalimentação Fisiológica , Groenlândia , Microalgas/metabolismo , Fotossíntese
8.
DNA Repair (Amst) ; 85: 102737, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751917

RESUMO

Cellular responses to DNA damage include activation of DNA-dependent protein kinase (DNA-PK) through, among others, the serine/threonine protein phosphatase 6 (PP6). We previously showed that recognition of DNA-PKcs is mediated by the SAPS1 PP6 regulatory subunit. Here, we report and characterize a SAPS1 null mouse and investigate the effects of deletion on DNA damage signaling and repair. Strikingly, neither SAPS1-null animals nor cells derived from them show gross defects, unless subjected to DNA damage by radiation or chemical agents. The overall survival of SAPS1-null animals following whole body irradiation is significantly shortened as compared to wild-type mice, and the clonogenic survival of null cells subjected to ionizing radiation is reduced. The dephosphorylation of DNA damage/repair markers, such as γH2AX, p53 and Kap1, is diminished in SAPS1-null cells as compared to wild-type controls. Our results demonstrate that loss of SAPS1 confers sensitivity to DNA damage and confirms previously reported cellular phenotypes of SAPS1 knock-down in human glioma cells. The results support a role for PP6 regulatory subunit SAPS1 in DNA damage responses, and offer a novel target for sensitization to enhance current tumor therapies, with a potential for limited deleterious side effects.


Assuntos
Proteína Quinase Ativada por DNA/genética , Mutação com Perda de Função , Fosfoproteínas Fosfatases/metabolismo , Irradiação Corporal Total/efeitos adversos , Animais , Células Cultivadas , Dano ao DNA , Reparo do DNA , Histonas/metabolismo , Camundongos , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteína 28 com Motivo Tripartido/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
Front Microbiol ; 10: 1366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333595

RESUMO

Current research into bacterial dynamics on the Greenland Ice Sheet (GrIS) is biased toward cryoconite holes, despite this habitat covering less than 8% of the ablation (melt) zone surface. In contrast, the expansive surface ice, which supports wide-spread Streptophyte micro-algal blooms thought to enhance surface melt, has been relatively neglected. This study aims to understand variability in bacterial abundance and production across an ablation season on the GrIS, in relation to micro-algal bloom dynamics. Bacterial abundance reached 3.3 ± 0.3 × 105 cells ml-1 in surface ice and was significantly linearly related to algal abundances during the middle and late ablation periods (R 2 = 0.62, p < 0.05; R 2 = 0.78, p < 0.001). Bacterial production (BP) of 0.03-0.6 µg C L-1 h-1 was observed in surface ice and increased in concert with glacier algal abundances, indicating that heterotrophic bacteria consume algal-derived dissolved organic carbon. However, BP remained at least 28 times lower than net primary production, indicating inefficient carbon cycling by heterotrophic bacteria and net accumulation of carbon in surface ice throughout the ablation season. Across the supraglacial environment, cryoconite sediment BP was at least four times greater than surface ice, confirming that cryoconite holes are the true "hot spots" of heterotrophic bacterial activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA