Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Imaging Model Heart ; 11504: 294-303, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31231721

RESUMO

Computational models of cardiac contraction can provide critical insight into cardiac function and dysfunction. A necessary step before employing these computational models is their validation. Here we propose a series of validation criteria based on left ventricular (LV) global (ejection fraction and twist) and local (strains in a cylindrical coordinate system, aggregate cardiomyocyte shortening, and low myocardial compressibility) MRI measures to characterize LV motion and deformation during contraction. These validation criteria are used to evaluate an LV finite element model built from subject-specific anatomy and aggregate cardiomyocyte orientations reconstructed from diffusion tensor MRI. We emphasize the key role of the simulation boundary conditions in approaching the physiologically correct motion and strains during contraction. We conclude by comparing the global and local validation criteria measures obtained using two different boundary conditions: the first constraining the LV base and the second taking into account the presence of the pericardium, which leads to greatly improved motion and deformation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28098434

RESUMO

Quantitative measurement of the material properties (eg, stiffness) of biological tissues is poised to become a powerful diagnostic tool. There are currently several methods in the literature to estimating material stiffness, and we extend this work by formulating a framework that leads to uniquely identified material properties. We design an approach to work with full-field displacement data-ie, we assume the displacement field due to the applied forces is known both on the boundaries and also within the interior of the body of interest-and seek stiffness parameters that lead to balanced internal and external forces in a model. For in vivo applications, the displacement data can be acquired clinically using magnetic resonance imaging while the forces may be computed from pressure measurements, eg, through catheterization. We outline a set of conditions under which the least-square force error objective function is convex, yielding uniquely identified material properties. An important component of our framework is a new numerical strategy to formulate polyconvex material energy laws that are linear in the material properties and provide one optimal description of the available experimental data. An outcome of our approach is the analysis of the reliability of the identified material properties, even for material laws that do not admit unique property identification. Lastly, we evaluate our approach using passive myocardium experimental data at the material point and show its application to identifying myocardial stiffness with an in silico experiment modeling the passive filling of the left ventricle.


Assuntos
Elasticidade , Coração/fisiologia , Modelos Biológicos , Fenômenos Biofísicos
3.
J Neurotrauma ; 34(8): 1692-1702, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27931146

RESUMO

Traumatic brain injury (TBI) in children can cause persisting cognitive and behavioral dysfunction, and inevitably raises concerns about lost potential in these injured youth. Lateral fluid percussion injury (FPI) in weanling rats pathologically affects hippocampal N-methyl-d-aspartate receptor (NMDAR)- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated glutamatergic neurotransmission subacutely within the first post-injury week. FPI to weanling rats has also been shown to impair enriched-environment (EE) induced enhancement of Morris water maze (MWM) learning and memory in adulthood. Recently, improved outcomes can be achieved using agents that enhance NMDAR function. We hypothesized that administering D-cycloserine (DCS), an NMDAR co-agonist, every 12 h (i.p.) would restore subacute glutamatergic neurotransmission and reinstate experience-dependent plasticity. Postnatal day 19 (P19) rats received either a sham or FPI. On post-injury day (PID) 1-3, animals were randomized to saline (Sal) or DCS. Firstly, immunoblotting of hippocampal NMDAR and AMPAR proteins were measured on PID4. Second, PID4 novel object recognition, an NMDAR- and hippocampal- mediated working memory task, was assessed. Third, P19 rats were placed in an EE (17 days), and MWM performance was measured, starting on PID30. On PID4, DCS restored reduced NR2A and increased GluR2 by 54%, and also restored diminished recognition memory in FPI pups. EE significantly improved MWM performance in shams, regardless of treatment. In contrast, FPI-EE-Sal animals only performed to the level of standard housed animals, whereas FPI-EE-DCS animals were comparable with sham-EE counterparts. This study shows that NMDAR agonist use during reduced glutamatergic transmission after developmental TBI can reinstate early molecular and behavioral responses that subsequently manifest in experience-dependent plasticity and rescued potential.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/reabilitação , Ciclosserina/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Terapia Combinada , Ciclosserina/administração & dosagem , Modelos Animais de Doenças , Meio Ambiente , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Masculino , Reabilitação Neurológica , Ratos , Ratos Sprague-Dawley , Receptores de AMPA , Receptores de N-Metil-D-Aspartato/agonistas
4.
PLoS Comput Biol ; 12(6): e1004968, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27336310

RESUMO

Heart failure is a leading cause of death, yet its underlying electrophysiological (EP) mechanisms are not well understood. In this study, we use a multiscale approach to analyze a model of heart failure and connect its results to features of the electrocardiogram (ECG). The heart failure model is derived by modifying a previously validated electrophysiology model for a healthy rabbit heart. Specifically, in accordance with the heart failure literature, we modified the cell EP by changing both membrane currents and calcium handling. At the tissue level, we modeled the increased gap junction lateralization and lower conduction velocity due to downregulation of Connexin 43. At the biventricular level, we reduced the apex-to-base and transmural gradients of action potential duration (APD). The failing cell model was first validated by reproducing the longer action potential, slower and lower calcium transient, and earlier alternans characteristic of heart failure EP. Subsequently, we compared the electrical wave propagation in one dimensional cables of healthy and failing cells. The validated cell model was then used to simulate the EP of heart failure in an anatomically accurate biventricular rabbit model. As pacing cycle length decreases, both the normal and failing heart develop T-wave alternans, but only the failing heart shows QRS alternans (although moderate) at rapid pacing. Moreover, T-wave alternans is significantly more pronounced in the failing heart. At rapid pacing, APD maps show areas of conduction block in the failing heart. Finally, accelerated pacing initiated wave reentry and breakup in the failing heart. Further, the onset of VF was not observed with an upregulation of SERCA, a potential drug therapy, using the same protocol. The changes introduced at the cell and tissue level have increased the failing heart's susceptibility to dynamic instabilities and arrhythmias under rapid pacing. However, the observed increase in arrhythmogenic potential is not due to a steepening of the restitution curve (not present in our model), but rather to a novel blocking mechanism.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Insuficiência Cardíaca/fisiopatologia , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Fibrilação Ventricular/fisiopatologia , Animais , Sistema de Condução Cardíaco/fisiologia , Miócitos Cardíacos/citologia , Coelhos
5.
PLoS One ; 9(12): e114494, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25493967

RESUMO

We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.


Assuntos
Eletrofisiologia Cardíaca/métodos , Simulação por Computador , Eletrocardiografia/métodos , Ventrículos do Coração/fisiopatologia , Ramos Subendocárdicos/fisiologia , Função Ventricular/fisiologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/fisiopatologia , Imagem de Tensor de Difusão/métodos , Endocárdio/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...