Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37367756

RESUMO

The development of phosphorylated polybenzimidazoles (PBI) for high-temperature polymer-electrolyte membrane (HT-PEM) fuel cells is a challenge and can lead to a significant increase in the efficiency and long-term operability of fuel cells of this type. In this work, high molecular weight film-forming pre-polymers based on N1,N5-bis(3-methoxyphenyl)-1,2,4,5-benzenetetramine and [1,1'-biphenyl]-4,4'-dicarbonyl dichloride were obtained by polyamidation at room temperature for the first time. During thermal cyclization at 330-370 °C, such polyamides form N-methoxyphenyl substituted polybenzimidazoles for use as a proton-conducting membrane after doping by phosphoric acid for H2/air HT-PEM fuel cells. During operation in a membrane electrode assembly at 160-180 °C, PBI self-phosphorylation occurs due to the substitution of methoxy-groups. As a result, proton conductivity increases sharply, reaching 100 mS/cm. At the same time, the current-voltage characteristics of the fuel cell significantly exceed the power indicators of the commercial BASF Celtec® P1000 MEA. The achieved peak power is 680 mW/cm2 at 180 °C. The developed approach to the creation of effective self-phosphorylating PBI membranes can significantly reduce their cost and ensure the environmental friendliness of their production.

2.
Membranes (Basel) ; 13(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37233540

RESUMO

High-temperature polymer-electrolyte membrane fuel cells (HT-PEM FC) are a very important type of fuel cell since they operate at 150-200 °C, allowing the use of hydrogen contaminated with CO. However, the need to improve stability and other properties of gas diffusion electrodes still hinders their distribution. Anodes based on a mat (self-supporting entire non-woven nanofiber material) of carbon nanofibers (CNF) were prepared by the electrospinning method from a polyacrylonitrile solution followed by thermal stabilization and pyrolysis of the mat. To improve their proton conductivity, Zr salt was introduced into the electrospinning solution. As a result, after subsequent deposition of Pt-nanoparticles, Zr-containing composite anodes were obtained. To improve the proton conductivity of the nanofiber surface of the composite anode and reach HT-PEMFC better performance, dilute solutions of Nafion®, a polymer of intrinsic microporosity (PIM-1) and N-ethyl phosphonated polybenzimidazole (PBI-OPhT-P) were used to coat the CNF surface for the first time. These anodes were studied by electron microscopy and tested in membrane-electrode assembly for H2/air HT-PEMFC. The use of CNF anodes coated with PBI-OPhT-P has been shown to improve the HT-PEMFC performance.

3.
Membranes (Basel) ; 12(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36295715

RESUMO

The further development of high temperature polymer electrolyte membrane (HT-PEM) fuel cells largely depends on the improvement of all components of the membrane-electrode assembly (MEA), especially membranes and electrodes. To improve the membrane characteristics, the cardo-polybenzimidazole (PBI-O-PhT)-based polymer electrolyte complex doped with phosphoric acid is reinforced using an electrospun m-PBI mat. As a result, the PBI-O-PhT/es-m-PBInet · nH3PO4 reinforced membrane is obtained with hydrogen crossover values (~0.2 mA cm-2 atm-1), one order of magnitude lower than the one of the initial PBI-O-PhT membrane (~3 mA cm-2 atm-1) during HT-PEM fuel cell operation with Celtec®P1000 electrodes at 180 °C. Just as importantly, the reinforced membrane resistance was very close to the original one (65-75 mΩ cm2 compared to ~60 mΩ cm2). A stress test that consisted of 20 start-stops, which included cooling to the room temperature and heating back to 180 °C, was applied to the MEAs with the reinforced membrane. More stable operation for the HT-PEM fuel cell was shown when the Celtec®P1000 cathode (based on carbon black) was replaced with the carbon nanofiber cathode (based on the pyrolyzed polyacrylonitrile electrospun nanofiber mat). The obtained data confirm the enhanced characteristics of the PBI-O-PhT/es-m-PBInet · nH3PO4 reinforced membrane.

4.
Polymers (Basel) ; 12(6)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545725

RESUMO

Electrospinning of polyacrylonitrile/DMF dopes containing salts of nickel, cobalt, zirconium, cerium, gadolinium, and samarium, makes it possible to obtain precursor nanofiber mats which can be subsequently converted into carbon nanofiber (CNF) composites by pyrolysis at 1000-1200 °C. Inorganic additives were found to be uniformly distributed in CNFs. Metal states were investigated by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). According to XPS in CNF/Zr/Ni/Gd composites pyrolyzed at 1000 °C, nickel exists as Ni0 and as Ni2+, gadolinium as Gd3+, and zirconium as Zr4+. If CNF/Zr/Ni/Gd is pyrolyzed at 1200 °C, nickel exists only as Ni0. For CNF/Sm/Co composite, samarium is in Sm3+ form when cobalt is not found on a surface. For CNF/Zr/Ni/Ce composite, cerium exists both as Ce4+ and as Ce3+. Composite CNF mats were platinized and tested as cathodes in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). Such approach allows to introduce Pt-M and Pt-MOx into CNF, which are more durable compared to carbon black under HT-PEMFC operation. For CNF/Zr/Ni/Gd composite cathode, higher performance in the HT-PEMFC at I >1.2 A cm-2 is achieved due to elimination of mass transfer losses in gas-diffusion electrode compared to commercial Celtec®P1000.

5.
Materials (Basel) ; 12(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731389

RESUMO

A new approach to the synthesis of polynaphthoylenebenzimidazoles and heat resistant fiber spinning has been developed using an environmentally friendly and energy efficient method, which operates with solutions of pre-polymers based on 3,3',4,4'-tetraaminodiphenyl ether and 1,4,5,8-naphthalenetetracarboxylic acid dianhydride in N-methylpyrrolidone. Rheological properties of polymer reaction solutions and appropriate coagulant mixtures were investigated for further wet spinning process. The coagulation process was investigated through microscopic observation of solution droplets which imitate jet/fiber cross section surrounded with coagulants of different composition. For the case of the most optimal viscoelastic properties of dopes the best coagulant was found to be a ternary mixture ethanol/water/NMP (20/10/70). Fibers were prepared through the wet spinning from pre-polymers of various molecular weight characterized by intrinsic viscosity. As a result, complex yarns were spun, and their morphology was characterized and mechanical properties were measured. The strength of ~300 MPa and elastic modulus of ~2 GPa and elongation at break of ~20% were reached for the best fibers at average diameter of ~20 µm. After heat treatment "Lola-M" fibers do not burn and do not support combustion in open flame.

6.
RSC Adv ; 9(47): 27406-27418, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35529212

RESUMO

Crystalline platinum nanoparticles supported on carbon nanofibers were synthesized for use as an electrocatalyst for polymer electrolyte membrane fuel cells. The nanofibers were prepared by a method of electrospinning from polymer solution with subsequent pyrolysis. Pt nanoneedles supported on polyacrylonitrile pyrolyzed electrospun nanofibers were synthesized by chemical reduction of H2[PtCl6] in aqueous solution. The synthesized electrocatalysts were investigated using scanning, high resolution transmission and scanning transmission electron microscopies, EDX analysis and electron diffraction. The shape and the size of the electrocatalyst crystal Pt nanoparticles were controled and found to depend on the method of H2[PtCl6] reduction type and on conditions of subsequent thermal treatment. Soft Pt reduction by formic acid followed by 100 °C thermal treatment produced needle-shape Pt nanoparticles with a needle length up to 25 nm and diameter up to 5 nm. Thermal treatment of these nanoparticles at 500 °C resulted in partial sintering of the Pt needles. When formic acid was added after 24 h from the beginning of platinization, Pt reduction resulted in small-size spherical Pt nanoparticle of less than 10 nm in diameter. Reduction of H2[PtCl6], preadsorbed on electrospun nanofibers in formic acid with further treatment in H2 flow at 500 °C, resulted in intensive sintering of platinum particles, with formation of conglomerates of 50 nm in size, however, individual particles still retain a size of less than 10 nm. Electrochemically active surface area (ECSA) of Pt/C catalyst was measured by electrochemical hydrogen adsorption/desorption measurements in 0.5 M H2SO4. ECSA of needle-shape Pt nanoparticles was 25 m2 g-1. It increased up to 31 m2 g-1 after thermal treatment at 500 °C, likely, due to amorphous structures removal from carbon nanofibers and retaining of Pt nanoneedle morphology. ECSA of small-size spherical Pt nanoparticles was 26 m2 g-1. Further thermal treatment at 500 °C in vacuum decreased ECSA down to 20 m2 g-1 due to Pt sintering and Pt active sites deactivation. The thermal treatment of small-size spherical Pt nanoparticles in H2 flow at 500 °C produced agglomerates of Pt nanoparticles with ECSA of 14 m2 g-1.

7.
RSC Adv ; 9(1): 257-267, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-35521606

RESUMO

The development of fuel cells is an important part of alternative energy studies. High-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) is a very promising and commercialized type of fuel cell since it allows the use of hydrogen contaminated with CO. However, current advances in HT-PEMFC are based on searching for more sustainable materials for the membrane electrode assembly. The key issue is to find new, more stable carbonaceous Pt-electrocatalyst supports instead of the traditional carbon black powder. In the present study, we primarily demonstrate a new electrode design concept. Complex carbon nanofiber paper (CNFP) electrodes, obtained by polyacrylonitrile (PAN) electrospinning with further pyrolysis at 900-1200 °C, are suitable for platinum deposition and were probed as the gas-diffusion electrode for HT-PEMFC. Complex composite electrodes were obtained by introducing zirconium and nickel salts into the electrospinning PAN solution. After pyrolysis, ZrO x and Ni(0) nanoparticles were distributed in the CNFP throughout the whole nanofiber volume, as it is seen in the high-resolution transmission electron microscopy images. The samples were thoroughly studied by X-ray photoelectron, Raman and impedance spectroscopy, cyclic voltammetry, and elemental analysis. The MEAs designed on platinized composite CNFPs demonstrate higher performance at 180 °C compared to non-composite ones and are comparable with commercial Celtec® P1000.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...