Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cogn Neurodyn ; 13(4): 379-392, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31354883

RESUMO

It is well known that neuronal networks are capable of transmitting complex spatiotemporal information in the form of precise sequences of neuronal discharges characterized by recurrent patterns. At the same time, the synchronized activity of large ensembles produces local field potentials that propagate through highly dynamic oscillatory waves, such that, at the whole brain scale, complex spatiotemporal dynamics of electroencephalographic (EEG) signals may be associated to sensorimotor decision making processes. Despite these experimental evidences, the link between highly temporally organized input patterns and EEG waves has not been studied in detail. Here, we use a neural mass model to investigate to what extent precise temporal information, carried by deterministic nonlinear attractor mappings, is filtered and transformed into fluctuations in phase, frequency and amplitude of oscillatory brain activity. The phase shift that we observe, when we drive the neural mass model with specific chaotic inputs, shows that the local field potential amplitude peak appears in less than one full cycle, thus allowing traveling waves to encode temporal information. After converting phase and amplitude changes obtained into point processes, we quantify input-output similarity following a threshold-filtering algorithm onto the amplitude wave peaks. Our analysis shows that the neural mass model has the capacity for gating the input signal and propagate selected temporal features of that signal. Finally, we discuss the effect of local excitatory/inhibitory balance on these results and how excitability in cortical columns, controlled by neuromodulatory innervation of the cerebral cortex, may contribute to set a fine tuning and gating of the information fed to the cortex.

2.
Chaos ; 28(10): 106307, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30384619

RESUMO

Symbolic methods of analysis are valuable tools for investigating complex time-dependent signals. In particular, the ordinal method defines sequences of symbols according to the ordering in which values appear in a time series. This method has been shown to yield useful information, even when applied to signals with large noise contamination. Here, we use ordinal analysis to investigate the transition between eyes closed (EC) and eyes open (EO) resting states. We analyze two electroencephalography datasets (with 71 and 109 healthy subjects) with different recording conditions (sampling rates and the number of electrodes in the scalp). Using as diagnostic tools the permutation entropy, the entropy computed from symbolic transition probabilities, and an asymmetry coefficient (that measures the asymmetry of the likelihood of the transitions between symbols), we show that the ordinal analysis applied to the raw data distinguishes the two brain states. In both datasets, we find that, during the EC-EO transition, the EO state is characterized by higher entropies and lower asymmetry coefficient, as compared to the EC state. Our results thus show that these diagnostic tools have the potential for detecting and characterizing changes in time-evolving brain states.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Encéfalo/fisiopatologia , Simulação por Computador , Eletrodos , Entropia , Voluntários Saudáveis , Humanos , Reconhecimento Automatizado de Padrão , Probabilidade , Reprodutibilidade dos Testes , Couro Cabeludo , Processamento de Sinais Assistido por Computador
3.
Phys Rev E ; 97(1-1): 012204, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29448445

RESUMO

At the mesoscopic scale, the brain can be understood as a collection of interacting neuronal oscillators, but the extent to which its sustained activity is due to coupling among brain areas is still unclear. Here we address this issue in a simplified situation by examining the effect of coupling between two cortical columns described via Jansen-Rit neural mass models. Our results show that coupling between the two neuronal populations gives rise to stochastic initiations of sustained collective activity, which can be interpreted as epileptic events. For large enough coupling strengths, termination of these events results mainly from the emergence of synchronization between the columns, and thus it is controlled by coupling instead of noise. Stochastic triggering and noise-independent durations are characteristic of excitable dynamics, and thus we interpret our results in terms of collective excitability.


Assuntos
Córtex Cerebral/fisiopatologia , Epilepsia/fisiopatologia , Modelos Neurológicos , Neurônios/fisiologia , Humanos , Periodicidade , Processos Estocásticos
4.
Neuroimage ; 146: 188-196, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865920

RESUMO

Macroscopic models of brain networks typically incorporate assumptions regarding the characteristics of afferent noise, which is used to represent input from distal brain regions or ongoing fluctuations in non-modelled parts of the brain. Such inputs are often modelled by Gaussian white noise which has a flat power spectrum. In contrast, macroscopic fluctuations in the brain typically follow a 1/fb spectrum. It is therefore important to understand the effect on brain dynamics of deviations from the assumption of white noise. In particular, we wish to understand the role that noise might play in eliciting aberrant rhythms in the epileptic brain. To address this question we study the response of a neural mass model to driving by stochastic, temporally correlated input. We characterise the model in terms of whether it generates "healthy" or "epileptiform" dynamics and observe which of these dynamics predominate under different choices of temporal correlation and amplitude of an Ornstein-Uhlenbeck process. We find that certain temporal correlations are prone to eliciting epileptiform dynamics, and that these correlations produce noise with maximal power in the δ and θ bands. Crucially, these are rhythms that are found to be enhanced prior to seizures in humans and animal models of epilepsy. In order to understand why these rhythms can generate epileptiform dynamics, we analyse the response of the model to sinusoidal driving and explain how the bifurcation structure of the model gives rise to these findings. Our results provide insight into how ongoing fluctuations in brain dynamics can facilitate the onset and propagation of epileptiform rhythms in brain networks. Furthermore, we highlight the need to combine large-scale models with noise of a variety of different types in order to understand brain (dys-)function.


Assuntos
Ondas Encefálicas , Córtex Cerebral/fisiopatologia , Epilepsia/fisiopatologia , Modelos Neurológicos , Eletroencefalografia , Epilepsia/etiologia , Humanos , Processamento de Sinais Assistido por Computador
5.
Artigo em Inglês | MEDLINE | ID: mdl-26300765

RESUMO

The mesoscopic activity of the brain is strongly dynamical, while at the same time exhibits remarkable computational capabilities. In order to examine how these two features coexist, here we show that the patterns of synchronized oscillations displayed by networks of neural mass models, representing cortical columns, can be used as substrates for Boolean-like computations. Our results reveal that the same neural mass network may process different combinations of dynamical inputs as different logical operations or combinations of them. This dynamical feature of the network allows it to process complex inputs in a very sophisticated manner. The results are reproduced experimentally with electronic circuits of coupled Chua oscillators, showing the robustness of this kind of computation to the intrinsic noise and parameter mismatch of the coupled oscillators. We also show that the information-processing capabilities of coupled oscillations go beyond the simple juxtaposition of logic gates.

6.
Artigo em Inglês | MEDLINE | ID: mdl-25762921

RESUMO

The brain is known to operate in multiple coexisting frequency bands. Increasing experimental evidence suggests that interactions between those distinct bands play a crucial role in brain processes, but the dynamical mechanisms underlying this cross-frequency coupling are still under investigation. Two approaches have been proposed to address this issue. In the first one distinct nonlinear oscillators representing the brain rhythms involved are coupled actively (bidirectionally), whereas in the second one the oscillators are coupled unidirectionally and thus the driving between them is passive. Here we elaborate the latter approach by implementing a stochastically driven network of coupled neural mass models that operate in the alpha range. This model exhibits a broadband power spectrum with 1/f(b) form, similar to those observed experimentally. Our results show that such a model is able to reproduce recent experimental observations on the effect of slow rocking on the alpha activity associated with sleep. This suggests that passive driving can account for cross-frequency transfer in the brain, as a result of the complex nonlinear dynamics of its underlying oscillators.

7.
PLoS Comput Biol ; 11(2): e1004007, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25671573

RESUMO

Neurons in the brain are known to operate under a careful balance of excitation and inhibition, which maintains neural microcircuits within the proper operational range. How this balance is played out at the mesoscopic level of neuronal populations is, however, less clear. In order to address this issue, here we use a coupled neural mass model to study computationally the dynamics of a network of cortical macrocolumns operating in a partially synchronized, irregular regime. The topology of the network is heterogeneous, with a few of the nodes acting as connector hubs while the rest are relatively poorly connected. Our results show that in this type of mesoscopic network excitation and inhibition spontaneously segregate, with some columns acting mainly in an excitatory manner while some others have predominantly an inhibitory effect on their neighbors. We characterize the conditions under which this segregation arises, and relate the character of the different columns with their topological role within the network. In particular, we show that the connector hubs are preferentially inhibitory, the more so the larger the node's connectivity. These results suggest a potential mesoscale organization of the excitation-inhibition balance in brain networks.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Potenciais de Ação/fisiologia , Algoritmos , Biologia Computacional , Rede Nervosa/fisiologia
8.
Phys Rev Lett ; 115(26): 265503, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26765005

RESUMO

A planar crack generically segments into an array of "daughter cracks" shaped as tilted facets when loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack front (mode III). We investigate facet propagation and coarsening using in situ microscopy observations of fracture surfaces at different stages of quasistatic mixed-mode crack propagation and phase-field simulations. The results demonstrate that the bifurcation from propagating a planar to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with experimental observations. They further show that facet coarsening is a self-similar process driven by a spatial period-doubling instability of facet arrays.

9.
Philos Trans R Soc Lond B Biol Sci ; 369(1653)2014 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-25180311

RESUMO

The mammalian brain operates in multiple spatial scales simultaneously, ranging from the microscopic scale of single neurons through the mesoscopic scale of cortical columns, to the macroscopic scale of brain areas. These levels of description are associated with distinct temporal scales, ranging from milliseconds in the case of neurons to tens of seconds in the case of brain areas. Here, we examine theoretically how these spatial and temporal scales interact in the functioning brain, by considering the coupled behaviour of two mesoscopic neural masses (NMs) that communicate with each other through a microscopic neuronal network (NN). We use the synchronization between the two NM models as a tool to probe the interaction between the mesoscopic scales of those neural populations and the microscopic scale of the mediating NN. The two NM oscillators are taken to operate in a low-frequency regime with different peak frequencies (and distinct dynamical behaviour). The microscopic neuronal population, in turn, is described by a network of several thousand excitatory and inhibitory spiking neurons operating in a synchronous irregular regime, in which the individual neurons fire very sparsely but collectively give rise to a well-defined rhythm in the gamma range. Our results show that this NN, which operates at a fast temporal scale, is indeed sufficient to mediate coupling between the two mesoscopic oscillators, which evolve dynamically at a slower scale. We also establish how this synchronization depends on the topological properties of the microscopic NN, on its size and on its oscillation frequency.


Assuntos
Encéfalo/fisiologia , Sincronização Cortical/fisiologia , Modelos Neurológicos , Rede Nervosa , Transmissão Sináptica/fisiologia , Animais , Humanos , Fatores de Tempo
10.
Nature ; 485(7397): 177-8, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22575952
11.
PLoS Comput Biol ; 7(12): e1002297, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22174668

RESUMO

Living systems are capable of processing multiple sources of information simultaneously. This is true even at the cellular level, where not only coexisting signals stimulate the cell, but also the presence of fluctuating conditions is significant. When information is received by a cell signaling network via one specific input, the existence of other stimuli can provide a background activity -or chatter- that may affect signal transmission through the network and, therefore, the response of the cell. Here we study the modulation of information processing by chatter in the signaling network of a human cell, specifically, in a Boolean model of the signal transduction network of a fibroblast. We observe that the level of external chatter shapes the response of the system to information carrying signals in a nontrivial manner, modulates the activity levels of the network outputs, and effectively determines the paths of information flow. Our results show that the interactions and node dynamics, far from being random, confer versatility to the signaling network and allow transitions between different information-processing scenarios.


Assuntos
Comunicação Celular , Transdução de Sinais/fisiologia , Humanos
12.
Nature ; 464(7285): 85-9, 2010 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-20203607

RESUMO

Planar crack propagation under pure tension loading (mode I) is generally stable. However, it becomes universally unstable with the superposition of a shear stress parallel to the crack front (mode III). Under this mixed-mode (I + III) loading configuration, an initially flat parent crack segments into an array of daughter cracks that rotate towards a direction of maximum tensile stress. This segmentation produces stepped fracture surfaces with characteristic 'lance-shaped' markings observed in a wide range of engineering and geological materials. The origin of this instability remains poorly understood and a theory with which to predict the surface roughness scale is lacking. Here we perform large-scale simulations of mixed-mode I + III brittle fracture using a continuum phase-field method that describes the complete three-dimensional crack-front evolution. The simulations reveal that planar crack propagation is linearly unstable against helical deformations of the crack front, which evolve nonlinearly into a segmented array of finger-shaped daughter cracks. Furthermore, during their evolution, facets gradually coarsen owing to the growth competition of daughter cracks in striking analogy with the coarsening of finger patterns observed in nonequilibrium growth phenomena. We show that the dynamically preferred unstable wavelength is governed by the balance of the destabilizing effect of far-field stresses and the stabilizing effect of cohesive forces on the process zone scale, and we derive a theoretical estimate for this scale using a new propagation law for curved cracks in three dimensions. The rotation angles of coarsened facets are also compared to theoretical predictions and available experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...