Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Biosci ; 12: 3683-93, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17485331

RESUMO

Cilia exert critical functions in numerous organisms, including that of cell motility, fluid transport and protozoan locomotion. Defects in this organelle can lead to lethal pathologies in humans, including primary ciliary dyskinesia. An understanding of the cilia formation process would lead to better characterization of defects involved in such pathologies. In the present study, we identified a gene encoding a novel human protein, BCAP for Basal body Centriole-Associated Protein, which shares homologies with a previously described protein, Outer Dense Fiber 2 (ODF2). ODF2, a major component of the sperm tail cytoskeleton, is required for the formation of mother centriole distal/subdistal appendages and the generation of primary cilia. Here, we show that the bcap gene contains 18 alternatively spliced exons and encodes five different isoforms, three long and two short ones. BCAP is preferentially expressed in cilia/flagella containing tissues. Moreover, its expression is correlated with cilia formation during mucociliary differentiation of human nasal epithelial cells. Using immunofluorescence analyses, BCAP was localized within basal bodies of ciliated cells and within centrioles of proliferating cells. In light of the several spliced isoforms of BCAP and the particular localization of the protein, BCAP isoforms could play distinct roles in cilia and in centrosomes.


Assuntos
Proteínas de Transporte/metabolismo , Centríolos/metabolismo , Northern Blotting , Proteínas de Transporte/genética , Diferenciação Celular , DNA Complementar , Imunofluorescência , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
2.
Front Biosci ; 12: 1661-9, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17127412

RESUMO

Cilia are specialized organelles that exert critical functions in numerous organisms, including that of cell motility, fluid transport and protozoan locomotion. Ciliary architecture and function strictly depend on basal body formation, migration and axoneme elongation. Numerous ultrastructural studies have been undertaken in different species to elucidate the process of ciliogenesis. Recent analyses have led to identification of genes specifically expressed in ciliated organisms, but most proteins involved in ciliogenesis remain uncharacterized. Using human nasal epithelial cells capable of ciliary differentiation in vitro, differential display was carried out to identify new proteins associated with ciliogenesis. We isolated a new gene, ICIS-1 (Involved in CIlia Stability-1), upregulated during mucociliary differentiation. This gene is localized within the TGF-beta1 promoter and is ubiquitously expressed in human tissues. Functional analyses of gene expression inhibition by RNA interference in Paramecium tetraurelia indicated that the ICIS-1 homologue interfered with cilia stability or formation. These findings demonstrate that ICIS-1 is a new protein associated with ciliated cells and potentially related to cilia stability.


Assuntos
Cílios/fisiologia , Proteínas/genética , Proteínas/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Humanos , Dados de Sequência Molecular , Mucosa Nasal/citologia , Paramecium tetraurellia/genética , Filogenia , Regiões Promotoras Genéticas , Proteínas/classificação , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Interferência de RNA , Homologia de Sequência , Distribuição Tecidual , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA