Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 22(6)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33286404

RESUMO

A perspective is taken on the intangible complexity of economic and social systems by investigating the dynamical processes producing, storing and transmitting information in financial time series. An extensive analysis based on the moving average cluster entropy approach has evidenced market and horizon dependence in highest-frequency data of real world financial assets. The behavior is scrutinized by applying the moving average cluster entropy approach to long-range correlated stochastic processes as the Autoregressive Fractionally Integrated Moving Average (ARFIMA) and Fractional Brownian motion (FBM). An extensive set of series is generated with a broad range of values of the Hurst exponent H and of the autoregressive, differencing and moving average parameters p , d , q . A systematic relation between moving average cluster entropy and long-range correlation parameters H, d is observed. This study shows that the characteristic behaviour exhibited by the horizon dependence of the cluster entropy is related to long-range positive correlation in financial markets. Specifically, long range positively correlated ARFIMA processes with differencing parameter d ≃ 0.05 , d ≃ 0.15 and d ≃ 0.25 are consistent with moving average cluster entropy results obtained in time series of DJIA, S&P500 and NASDAQ. The findings clearly point to a variability of price returns, consistently with a price dynamics involving multiple temporal scales and, thus, short- and long-run volatility components. An important aspect of the proposed approach is the ability to capture detailed horizon dependence over relatively short horizons (one to twelve months) and thus its relevance to define risk analysis indices.

2.
Proc Natl Acad Sci U S A ; 105(50): 19595-600, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19066227

RESUMO

The relationship between the size and the variance of firm growth rates is known to follow an approximate power-law behavior sigma(S) approximately S(-beta(S)) where S is the firm size and beta(S) approximately 0.2 is an exponent that weakly depends on S. Here, we show how a model of proportional growth, which treats firms as classes composed of various numbers of units of variable size, can explain this size-variance dependence. In general, the model predicts that beta(S) must exhibit a crossover from beta(0) = 0 to beta(infinity) = 1/2. For a realistic set of parameters, beta(S) is approximately constant and can vary from 0.14 to 0.2 depending on the average number of units in the firm. We test the model with a unique industry-specific database in which firm sales are given in terms of the sum of the sales of all their products. We find that the model is consistent with the empirically observed size-variance relationship.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...