Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 136: 105535, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36302274

RESUMO

BACKGROUND: Dental zirconium oxide restorations are milled from pre-sintered blocks or disks which are produced either with high isostatic pressure (HIP) or, simpler, a slurry technique. The objective was to perform a fatigue test and an in vitro wear simulation of two ceramics, yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) ceramic and a hybrid zirconium oxide-aluminum oxide ceramic, (ATZ) both produced either the classical way using high isostatic pressure (HIP, control) or with a slurry technique. MATERIALS AND METHODS: Ten discs/group were subjected to a cyclic biaxial fatigue test using a staircase approach under water at 37 °C in a dynamic universal testing machine. The 2-body wear test was performed on eight lapped 12 mm thick cylindrical samples subjected to spherical (ø 6 mm) leucite ceramic antagonists in a CS-4 chewing simulator at 49 N force and 0.7 mm lateral movement for 600 k cycles and 4167 thermal cycles (5-55 °C). Volumetric wear was calculated based on laser-scanned surfaces. Selected samples of both tests were viewed in SEM. RESULTS: All the ceramic specimens produced using the HIP method survived up to 1.2 M cycles with the maximum load of the equipment (1000 N) loading the specimens up to 1527 MPa. The fatigue limit stress at 1.2 M cycles for the Slurry ATZ samples was 946 MPa. For the Slurry Y-TZP samples the fatigue limit stress at 1.2 M cycles was 658 MPa. At 600 k cycles, all zirconium oxide ceramics showed no measurable wear and had a highly polished appearance. The leucite ceramic antagonists wear developed in a linear way. There was no difference between the materials produced with the slurry and the HIP process. ATZ ceramic produced significantly more wear than 3Y- TZP ceramic. CONCLUSIONS: The HIP method provided higher fatigue strength than the Slurry manufacturing method. All HIP ceramics surpassed the limit threshold (1527 MPa) of the testing machine. The tested ceramics did not show any measurable wear but had worn the leucite reinforced glass ceramic antagonists for a considerable amount.


Assuntos
Cerâmica , Zircônio , Teste de Materiais , Propriedades de Superfície , Zircônio/química , Cerâmica/química , Ítrio/química , Porcelana Dentária
2.
J Clin Exp Dent ; 14(6): e492-e498, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35765356

RESUMO

Background: The use of dental headlights is a common practice to better illuminate the operatory field and achieve excellence in restorative dentistry. However, visible light-cured dental materials can have reduced working time under headlight illumination. The aim of this study was to evaluate the influence of the spectral irradiance power of two dental headlights on the degree of polymerization and working time of light-curable dental composites. Material and Methods: Two headlights, StarLight Nano 3 (StarMed) (SN) and Zeon Endevour XL (Orascoptic) (ZE) were characterized using a spectrophotometer coupled to an integrating sphere (MARC® Light Collector, BlueLight Analytics). The degree of conversion of the two composites, Filtek Supreme (3M) and Tetric Prime (Ivoclar Vivadent), was evaluated using an FTIR spectroscope (NicoletTM iS20, Thermo Fisher). Results: Both headlights emitted a significant amount of blue light. The Zeon headlamp without filter emitted a broader spectrum with lower blue intensity and higher CRI than the White LED of the Nano 3. The Zeon headlamp with the blue blocking filter emitted a broader spectrum than the Orange LED of the Nano 3. There were no differences in the degree of conversion and working time of the Filtek Supreme and Tetric Prime composites when illuminated by the different headlamps. Both Zeon and the White LED of the Nano 3 were capable to cure the composites within only 5-10 minutes of irradiation. There were no changes in the degree of conversion of the composites when the Orange LED of the Nano 3 or the blue blocking filter of the Zeon were used. Conclusions: Both headlights reduced the working time of light-cured materials. The use of orange filters prevented the composite polymerization and maintained the working time. Key words:Surgical Headlight, degree of conversion, working time, light-curing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA