Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Phys ; 14(8): 837-841, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30079096

RESUMO

Optical excitation at terahertz frequencies has emerged as an effective means to dynamically manipulate complex materials. In the molecular solid K3C60, short mid-infrared pulses transform the high-temperature metal into a non-equilibrium state with the optical properties of a superconductor. Here we tune this effect with hydrostatic pressure and find that the superconducting-like features gradually disappear at around 0.3 GPa. Reduction with pressure underscores the similarity with the equilibrium superconducting phase of K3C60, in which a larger electronic bandwidth induced by pressure is also detrimental for pairing. Crucially, our observation excludes alternative interpretations based on a high-mobility metallic phase. The pressure dependence also suggests that transient, incipient superconductivity occurs far above the 150 K hypothesised previously, and rather extends all the way to room temperature.

2.
Phys Rev Lett ; 118(23): 237601, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644632

RESUMO

We present a detailed NMR study of the insulator-to-metal transition induced by an applied pressure p in the A15 phase of Cs_{3}C_{60}. We evidence that the insulating antiferromagnetic (AFM) and superconducting (SC) phases coexist only in a narrow p range. At fixed p, in the metallic state above the SC transition T_{c}, the ^{133}Cs and ^{13}C NMR spin-lattice relaxation data are seemingly governed by a pseudogaplike feature. We prove that this feature, also seen in the ^{133}Cs NMR shift data, is rather a signature of the Mott transition which broadens and smears out progressively for increasing (p,T). The analysis of the variation of the quadrupole splitting ν_{Q} of the ^{133}Cs NMR spectrum precludes any cell symmetry change at the Mott transition and only monitors a weak variation of the lattice parameter. These results open an opportunity to consider theoretically the Mott transition in a multiorbital three-dimensional system well beyond its critical point.

3.
Nature ; 530(7591): 461-4, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26855424

RESUMO

The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects such as the optical enhancement of superconductivity. Nonlinear excitation of certain phonons in bilayer copper oxides was recently shown to induce superconducting-like optical properties at temperatures far greater than the superconducting transition temperature, Tc (refs 4-6). This effect was accompanied by the disruption of competing charge-density-wave correlations, which explained some but not all of the experimental results. Here we report a similar phenomenon in a very different compound, K3C60. By exciting metallic K3C60 with mid-infrared optical pulses, we induce a large increase in carrier mobility, accompanied by the opening of a gap in the optical conductivity. These same signatures are observed at equilibrium when cooling metallic K3C60 below Tc (20 kelvin). Although optical techniques alone cannot unequivocally identify non-equilibrium high-temperature superconductivity, we propose this as a possible explanation of our results.

4.
Sci Rep ; 5: 15240, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468959

RESUMO

Cs3C60 is an antiferromagnetic insulator that under pressure (P) becomes metallic and superconducting below Tc = 38 K. The superconducting dome present in the T - P phase diagram close to a magnetic state reminds what found in superconducting cuprates and pnictides, strongly suggesting that superconductivity is not of the conventional Bardeen-Cooper-Schrieffer (BCS) type We investigate the insulator to metal transition induced by pressure in Cs3C60 by means of infrared spectroscopy supplemented by Dynamical Mean-Field Theory calculations. The insulating compound is driven towards a metallic-like behaviour, while strong correlations survive in the investigated pressure range. The metallization process is accompanied by an enhancement of the Jahn-Teller effect. This shows that electronic correlations are crucial in determining the insulating behaviour at ambient pressure and the bad metallic nature for increasing pressure. On the other hand, the relevance of the Jahn-Teller coupling in the metallic state confirms that phonon coupling survives in the presence of strong correlations.

5.
Phys Rev Lett ; 112(6): 066401, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24580696

RESUMO

Former extensive studies of superconductivity in the A3C60 compounds, where A is an alkali metal, have led one to consider that Bardeen-Cooper-Schrieffer electron-phonon pairing prevails in those compounds, though the incidence of electronic Coulomb repulsion has been highly debated. The discovery of two isomeric fulleride compounds Cs3C60 which exhibit a transition with pressure from a Mott insulator (MI) to a superconducting (SC) state clearly reopens that question. Using pressure (p) as a single control parameter of the C60 balls lattice spacing, one can now study the progressive evolution of the SC properties when the electronic correlations are increased towards the critical pressure p(c) of the Mott transition. We have used 13C and 133Cs NMR measurements on the cubic phase A15-Cs3C60 just above p(c)=5.0(3) kbar, where the SC transition temperature Tc displays a dome shape with decreasing cell volume. From the T dependence below T(c) of the nuclear spin lattice relaxation rate (T1)(-1) we determine the electronic excitations in the SC state, that is 2Δ, the gap value. The latter is found to be largely enhanced with respect to the Bardeen-Cooper-Schrieffer value established in the case of dense A3C60 compounds. It even increases slightly with decreasing p towards p(c), where T(c) decreases on the SC dome, so that 2Δ/k(B)T(c) increases regularly upon approaching the Mott transition. These results bring clear evidence that the increasing correlations near the Mott transition are not significantly detrimental to superconductivity. They rather suggest that repulsive electron interactions might even reinforce elecron-phonon superconductivity, being then partly responsible for the large T(c) values, as proposed by theoretical models taking the electronic correlations as a key ingredient.

6.
Phys Rev Lett ; 104(25): 256402, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20867402

RESUMO

We report a NMR and magnetometry study on the expanded intercalated fulleride Cs3C60 in both its A15 and face centered cubic structures. NMR allowed us to evidence that both exhibit a first-order Mott transition to a superconducting state, occurring at distinct critical pressures p{c} and temperatures T{c}. Though the ground state magnetism of the Mott phases differs, their high T paramagnetic and superconducting properties are found similar, and the phase diagrams versus unit volume per C60 are superimposed. Thus, as expected for a strongly correlated system, the interball distance is the relevant parameter driving the electronic behavior and quantum transitions of these systems.

7.
Phys Rev Lett ; 102(14): 145901, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19392454

RESUMO

We report on the extraordinary superionic conductivity in the fulleride polymer Li4C60, a crystalline material with no disorder. 7Li, NMR, and dc frequency dependent conductivity show uncorrelated ionic hopping across small energy barriers (DeltaE_{a} approximately 200 meV) and an ionic conductivity of 10;{-2} S/cm at room temperature, higher than in "standard" ionic conductors. Ab initio calculations of the molecular structure find intrinsic unoccupied interstitial sites that can be filled by Li+ cations in stoichiometric Li4C60 even at low temperatures. The low energy required for the occupation of these sites allows a sizable Li+ diffusion above 130 K. The results suggest novel application of lithium intercalated fullerides as electrodes in Li ions batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...