Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5236, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640706

RESUMO

Abundant extrachromosomal circular DNA (eccDNA) is associated with transposable element (TE) activity. However, how the eccDNA compartment is controlled by epigenetic regulations and what is its impact on the genome is understudied. Here, using long reads, we sequence both the eccDNA compartment and the genome of Arabidopsis thaliana mutant plants affected in DNA methylation and post-transcriptional gene silencing. We detect a high load of TE-derived eccDNA with truncated and chimeric forms. On the genomic side, on top of truncated and full length TE neo-insertions, we detect complex structural variations (SVs) notably at a disease resistance cluster being a natural hotspot of SV. Finally, we serendipitously identify large tandem duplications in hypomethylated plants, suggesting that SVs could have been overlooked in epigenetic mutants. We propose that a high eccDNA load may alter DNA repair pathways leading to genome instability and the accumulation of SVs, at least in plants.


Assuntos
Arabidopsis , Humanos , Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Instabilidade Genômica/genética , Interferência de RNA , DNA Circular
2.
J Exp Bot ; 74(15): 4384-4400, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37179467

RESUMO

In plant cells, a large pool of iron (Fe) is contained in the nucleolus, as well as in chloroplasts and mitochondria. A central determinant for intracellular distribution of Fe is nicotianamine (NA) generated by NICOTIANAMINE SYNTHASE (NAS). Here, we used Arabidopsis thaliana plants with disrupted NAS genes to study the accumulation of nucleolar iron and understand its role in nucleolar functions and more specifically in rRNA gene expression. We found that nas124 triple mutant plants, which contained lower quantities of the iron ligand NA, also contained less iron in the nucleolus. This was concurrent with the expression of normally silenced rRNA genes from nucleolar organizer regions 2 (NOR2). Notably, in nas234 triple mutant plants, which also contained lower quantities of NA, nucleolar iron and rDNA expression were not affected. In contrast, in both nas124 and nas234, specific RNA modifications were differentially regulated in a genotype dependent manner. Taken together, our results highlight the impact of specific NAS activities in RNA gene expression. We discuss the interplay between NA and nucleolar iron with rDNA functional organization and RNA methylation.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , DNA Ribossômico/metabolismo , Metilação , Ferro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
3.
J Exp Bot ; 74(8): 2707-2725, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36715641

RESUMO

In the context of climate change, the global rise of temperature and intense heat waves affect plant development and productivity. Among the molecular perturbations that high temperature induces in living cells is the accumulation of reactive oxygen species (ROS), which perturbs the cellular redox state. In plants, the dynamics of the cellular and subcellular redox state have been poorly investigated under high temperature. Glutathione plays a major role in maintaining the cellular redox state. We investigated its contribution in adaptation of Arabidopsis thaliana to contrasting high temperature regimes: high ambient temperature inducing thermomorphogenesis and heat stress affecting plant viability. Using the genetically encoded redox marker roGFP2, we show that high temperature regimes lead to cytoplasmic and nuclear oxidation and impact the glutathione pool. This pool is restored within a few hours, which probably contributes to plant adaptation to high temperatures. Moreover, low glutathione mutants fail to adapt to heat stress and to induce thermomorphogenesis, suggesting that glutathione is involved in both heat adaptation mechanisms. We also evaluate the transcriptomic signature in the two high temperature regimes and identified gene expression deviations in low glutathione mutants, which might contribute to their sensitivity to high temperature. Thus, we define glutathione as a major player in the adaptation of Arabidopsis to contrasting high temperature regimes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Glutationa/metabolismo , Proteínas de Arabidopsis/metabolismo , Oxirredução , Resposta ao Choque Térmico , Regulação da Expressão Gênica de Plantas
4.
EMBO Rep ; 23(12): e54736, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36278395

RESUMO

Homologous recombination (HR) is a conservative DNA repair pathway in which intact homologous sequences are used as a template for repair. How the homology search happens in the crowded space of the cell nucleus is, however, still poorly understood. Here, we measure chromosome and double-strand break (DSB) site mobility in Arabidopsis thaliana, using lacO/LacI lines and two GFP-tagged HR reporters. We observe an increase in chromatin mobility upon the induction of DNA damage, specifically at the S/G2 phases of the cell cycle. This increase in mobility is lost in the sog1-1 mutant, a central transcription factor of the DNA damage response in plants. Also, DSB sites show particularly high mobility levels and their enhanced mobility requires the HR factor RAD54. Our data suggest that repair mechanisms promote chromatin mobility upon DNA damage, implying a role of this process in the early steps of the DNA damage response.


Assuntos
Cromatina , Dano ao DNA , Cromatina/genética
6.
Front Plant Sci ; 12: 677849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295343

RESUMO

Together with local chromatin structure, gene accessibility, and the presence of transcription factors, gene positioning is implicated in gene expression regulation. Although the basic mechanisms are expected to be conserved in eukaryotes, less is known about the role of gene positioning in plant cells, mainly due to the lack of a highly resolutive approach. In this study, we adapted the use of the ANCHOR system to perform real-time single locus detection in planta. ANCHOR is a DNA-labeling tool derived from the chromosome partitioning system found in many bacterial species. We demonstrated its suitability to monitor a single locus in planta and used this approach to track chromatin mobility during cell differentiation in Arabidopsis thaliana root epidermal cells. Finally, we discussed the potential of this approach to investigate the role of gene positioning during transcription and DNA repair in plants.

7.
Genome Res ; 30(11): 1583-1592, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33033057

RESUMO

Rapid plant genome evolution is crucial to adapt to environmental changes. Chromosomal rearrangements and gene copy number variation (CNV) are two important tools for genome evolution and sources for the creation of new genes. However, their emergence takes many generations. In this study, we show that in Arabidopsis thaliana, a significant loss of ribosomal RNA (rRNA) genes with a past history of a mutation for the chromatin assembly factor 1 (CAF1) complex causes rapid changes in the genome structure. Using long-read sequencing and microscopic approaches, we have identified up to 15 independent large tandem duplications in direct orientation (TDDOs) ranging from 60 kb to 1.44 Mb. Our data suggest that these TDDOs appeared within a few generations, leading to the duplication of hundreds of genes. By subsequently focusing on a line only containing 20% of rRNA gene copies (20rDNA line), we investigated the impact of TDDOs on 3D genome organization, gene expression, and cytosine methylation. We found that duplicated genes often accumulate more transcripts. Among them, several are involved in plant-pathogen response, which could explain why the 20rDNA line is hyper-resistant to both bacterial and nematode infections. Finally, we show that the TDDOs create gene fusions and/or truncations and discuss their potential implications for the evolution of plant genomes.


Assuntos
Arabidopsis/genética , Resistência à Doença/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de RNAr , Expressão Gênica , Genes de Plantas , Genoma de Planta , Instabilidade Genômica
8.
J Exp Bot ; 71(17): 5160-5178, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32556244

RESUMO

Understanding how the packaging of chromatin in the nucleus is regulated and organized to guide complex cellular and developmental programmes, as well as responses to environmental cues is a major question in biology. Technological advances have allowed remarkable progress within this field over the last years. However, we still know very little about how the 3D genome organization within the cell nucleus contributes to the regulation of gene expression. The nuclear space is compartmentalized in several domains such as the nucleolus, chromocentres, telomeres, protein bodies, and the nuclear periphery without the presence of a membrane around these domains. The role of these domains and their possible impact on nuclear activities is currently under intense investigation. In this review, we discuss new data from research in plants that clarify functional links between the organization of different nuclear domains and plant genome function with an emphasis on the potential of this organization for gene regulation.


Assuntos
Núcleo Celular , Cromatina , Nucléolo Celular , Regulação da Expressão Gênica , Plantas/genética
9.
J Plant Res ; 133(4): 463-470, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32372397

RESUMO

Several layers of mechanisms participate in plant adaptation to heat-stress. For example, the plant metabolism switches from cell growth mode to stress adaptation mode. Ribosome biogenesis is one of the most energy costly pathways. That biogenesis process occurs in the nucleolus, the largest nuclear compartment, whose structure is highly dependent on this pathway. We used a nucleolar marker to track the structure of the nucleolus, and revealed a change in its sub-nucleolar distribution under heat stress. In addition, the nucleolus is implicated in other cellular processes, such as genome organization within the nucleus. However, our analyses of nucleolus-associated chromatin domains under heat stress did not reveal significant differences compared to the control plants, suggesting a lack of connection between two of the main functions of the nucleolus: ribosome biogenesis and nuclear organization.


Assuntos
Arabidopsis , Cromatina , Resposta ao Choque Térmico , Arabidopsis/genética , Nucléolo Celular , Núcleo Celular
10.
J Plant Res ; 133(4): 479-488, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32240449

RESUMO

In recent years, the study of plant three-dimensional nuclear architecture received increasing attention. Enabled by technological advances, our knowledge on nuclear architecture has greatly increased and we can now access large data sets describing its manifold aspects. The principles of nuclear organization in plants do not significantly differ from those in animals. Plant nuclear organization comprises various scales, ranging from gene loops to topologically associating domains to nuclear compartmentalization. However, whether plant three-dimensional chromosomal features also exert similar functions as in animals is less clear. This review discusses recent advances in the fields of three-dimensional chromosome folding and nuclear compartmentalization and describes a novel silencing mechanism, which is closely linked to nuclear architecture.


Assuntos
Arabidopsis , Núcleo Celular , Animais , Arabidopsis/genética , Núcleo Celular/genética , Cromatina
11.
Curr Opin Plant Biol ; 54: 1-10, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31881292

RESUMO

Genome organization displays functional compartmentalization. Many factors, including epigenetic modifications, transcription factors, chromatin remodelers, and RNAs, shape chromatin domains and the three-dimensional genome organization. Various types of chromatin domains with distinct epigenetic and spatial features exhibit different transcriptional activities. As part of the efforts to better understand plant functional genomics, over the past a few years, spatial distribution patterns of plant chromatin domains have been brought to light. In this review, we discuss chromatin domains associated with the nuclear periphery and the nucleolus, as well as chromatin domains staying in proximity and showing physical interactions. The functional implication of these domains is discussed, with a particular focus on the transcriptional regulation and replication timing. Finally, from a biophysical point of view, we discuss potential roles of liquid-liquid phase separation in plant nuclei in the genesis and maintenance of spatial chromatin domains.


Assuntos
Núcleo Celular , Cromatina , Epigenômica , Regulação da Expressão Gênica , Plantas
12.
Nucleus ; 10(1): 67-72, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30870088

RESUMO

Genomic interactions can occur in addition to those within chromosome territories and can be organized around nuclear bodies. Several studies revealed how the nucleolus anchors higher order chromatin structures of specific chromosome regions displaying heterochromatic features. In this review, we comment on advances in this emerging field, with a particular focus on a recent study published by Quinodoz et al., that developed a new method to characterize simultaneous genomic interactions in the same cell. Highlighting studies conducted in animal and plant cells, we then discuss the establishment of inactive chromatin at nucleolus organizer region (NOR)-bearing chromosomes.


Assuntos
Nucléolo Celular/genética , Cromatina/genética , RNA Ribossômico/genética , Animais , Humanos
13.
Plant Cell ; 30(11): 2795-2812, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30333146

RESUMO

Cyst nematodes are plant-pathogenic animals that secrete effector proteins into plant root cells to alter host gene expression and reprogram these cells to form specialized feeding sites, known as syncytia. The molecular mechanisms of these effectors are mostly unknown. We determined that the sugar beet cyst nematode (Heterodera schachtii) 32E03 effector protein strongly inhibits the activities of Arabidopsis thaliana histone deacetylases including the HDT1 enzyme, which has a known function in the regulation of rRNA gene expression through chromatin modifications. We determined that plants expressing the 32E03 coding sequence exhibited increased acetylation of histone H3 along the rDNA chromatin. At low 32E03 expression levels, these chromatin changes triggered the derepression of a subset of rRNA genes, which were conducive to H. schachtii parasitism. By contrast, high levels of 32E03 caused profound bidirectional transcription along the rDNA, which triggered rDNA-specific small RNA production leading to RNA-directed DNA methylation and silencing of rDNA, which inhibited nematode development. Our data show that the 32E03 effector alters plant rRNA gene expression by modulating rDNA chromatin in a dose-dependent manner. Thus, the 32E03 effector epigenetically regulates plant gene expression to promote cyst nematode parasitism.


Assuntos
Arabidopsis/genética , Arabidopsis/parasitologia , DNA Ribossômico/metabolismo , Histonas/metabolismo , RNA Ribossômico/metabolismo , Acetilação , Animais , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Interações Hospedeiro-Parasita , Tylenchoidea/patogenicidade
14.
Methods Mol Biol ; 1675: 99-109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29052188

RESUMO

The nuclear context needs to be taken into consideration to better understand the mechanisms shaping the epigenome and its organization, and therefore its impact on gene expression. For example, in Arabidopsis, heterochromatin is preferentially localized at the nuclear and the nucleolar periphery. Although chromatin domains associating with the nuclear periphery remain to be identified in plant cells, Nucleolus Associated chromatin Domains (NADs) can be identified thanks to a protocol allowing the isolation of pure nucleoli. We describe here the protocol enabling the identification of NADs in Arabidopsis. Providing the transfer of a nucleolus marker as described here in other crop species, this protocol is broadly applicable.


Assuntos
Nucléolo Celular/genética , Cromatina/química , Análise de Sequência de DNA/métodos , Arabidopsis/genética , Núcleo Celular/genética , Cromatina/genética , Biologia Computacional/métodos , DNA de Plantas/genética , Genoma de Planta , Transcrição Gênica
15.
Front Plant Sci ; 8: 1815, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104584

RESUMO

In all eukaryotic cells, the nucleolus is functionally and structurally linked to rRNA synthesis and ribosome biogenesis. This compartment contains as well factors involved in other cellular activities, but the functional interconnection between non-ribosomal activities and the nucleolus (structure and function) still remains an open question. Here, we report a novel mass spectrometry analysis of isolated nucleoli from Arabidopsis thaliana plants using the FANoS (Fluorescence Assisted Nucleolus Sorting) strategy. We identified many ribosome biogenesis factors (RBF) and proteins non-related with ribosome biogenesis, in agreement with the recognized multi-functionality of the nucleolus. Interestingly, we found that 26S proteasome subunits localize in the nucleolus and demonstrated that proteasome activity and nucleolus organization are intimately linked to each other. Proteasome subunits form discrete foci in the disorganized nucleolus of nuc1.2 plants. Nuc1.2 protein extracts display reduced proteasome activity in vitro compared to WT protein extracts. Remarkably, proteasome activity in nuc1.2 is similar to proteasome activity in WT plants treated with proteasome inhibitors (MG132 or ALLN). Finally, we show that MG132 treatment induces disruption of nucleolar structures in WT but not in nuc1.2 plants. Altogether, our data suggest a functional interconnection between nucleolus structure and proteasome activity.

16.
Proc Natl Acad Sci U S A ; 114(14): 3702-3707, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28270603

RESUMO

Hybrid incompatibility resulting from deleterious gene combinations is thought to be an important step toward reproductive isolation and speciation. Here, we demonstrate involvement of a silent epiallele in hybrid incompatibility. In Arabidopsis thaliana accession Cvi-0, one of the two copies of a duplicated histidine biosynthesis gene, HISN6A, is mutated, making HISN6B essential. In contrast, in accession Col-0, HISN6A is essential because HISN6B is not expressed. Owing to these differences, Cvi-0 × Col-0 hybrid progeny that are homozygous for both Cvi-0 HISN6A and Col-0 HISN6B do not survive. We show that HISN6B of Col-0 is not a defective pseudogene, but a stably silenced epiallele. Mutating HISTONE DEACETYLASE 6 (HDA6), or the cytosine methyltransferase genes MET1 or CMT3, erases HISN6B's silent locus identity, reanimating the gene to circumvent hisn6a lethality and hybrid incompatibility. These results show that HISN6-dependent hybrid lethality is a revertible epigenetic phenomenon and provide additional evidence that epigenetic variation has the potential to limit gene flow between diverging populations of a species.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Epigênese Genética , Transaminases/genética , Alelos , Arabidopsis/genética , Quimera , DNA (Citosina-5-)-Metiltransferases/genética , DNA-Citosina Metilases/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes Letais , Desacetilase 6 de Histona/genética , Mutação
17.
Nucleus ; 8(1): 11-16, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27644794

RESUMO

The nucleolus forms as a consequence of ribosome biogenesis, but it is also implicated in other cell functions. The identification of nucleolus-associated chromatin domains (NADs) in animal and plant cells revealed the presence of DNA sequences other than rRNA genes in and around the nucleolus. NADs display repressive chromatin signatures and harbour repetitive DNA, but also tRNA genes and RNA polymerase II-transcribed genes. Furthermore, the identification of NADs revealed a specific function of the nucleolus and the protein Nucleolin 1 (NUC1) in telomere biology. Here, we discuss the significance of these data with regard to nucleolar structure and to the role of the nucleolus and NUC1 in global genome organization and stability.


Assuntos
Nucléolo Celular/metabolismo , DNA de Plantas , Genoma de Planta/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , DNA de Plantas/genética , DNA de Plantas/metabolismo , Heterocromatina/metabolismo , Humanos , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Nucleolina
18.
Proc Natl Acad Sci U S A ; 113(47): 13426-13431, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821753

RESUMO

Nucleolus organizer regions (NORs) are chromosomal loci where hundreds of rRNA genes are clustered. Despite being nearly identical in sequence, specific rRNA genes are selected for silencing during development via choice mechanism(s) that remain unclear. In Arabidopsis thaliana, rRNA gene subtypes that are silenced during development were recently mapped to the NOR on chromosome 2, NOR2, whereas active rRNA genes map to NOR4, on chromosome 4. In a mutant line deficient for ATXR5 or ATXR6-dependent histone H3 lysine 27 (H3K27) monomethylation, we show that millions of base pairs of chromosome 4, including the telomere, TEL4N, and much of NOR4, have been converted to the corresponding sequences of chromosome 2. This genomic change places rRNA genes of NOR2, which are normally silenced, at the position on chromosome 4 where active rRNA genes are normally located. At their new location, NOR2-derived rRNA genes escape silencing, independent of the atxr mutations, indicating that selective rRNA gene silencing is chromosome 2-specific. The chromosome 2 position effect is not explained by the NOR2-associated telomere, TEL2N, which remains linked to the translocated NOR, implicating centromere-proximal sequences in silencing.


Assuntos
Arabidopsis/genética , Efeitos da Posição Cromossômica/genética , Cromossomos de Plantas/genética , Região Organizadora do Nucléolo/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Genótipo , Hibridização Genética , Modelos Genéticos , RNA Ribossômico/genética , Telômero/genética
19.
Methods Mol Biol ; 1455: 203-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27576720

RESUMO

Nucleolar isolation allows exhaustive characterization of the nucleolar content. Centrifugation-based protocols are not adapted to isolation of nucleoli directly from a plant tissue because of copurification of cellular debris. We describe here a method that allows the purification of nucleoli using fluorescent-activated cell sorting from Arabidopsis thaliana leaves. This approach requires the expression of a specific nucleolar protein such as fibrillarin fused to green fluorescent protein in planta.


Assuntos
Arabidopsis/metabolismo , Nucléolo Celular/metabolismo , Citometria de Fluxo , Cloroplastos/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Citometria de Fluxo/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
Cell Rep ; 16(6): 1574-1587, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477271

RESUMO

The nucleolus is the site of rRNA gene transcription, rRNA processing, and ribosome biogenesis. However, the nucleolus also plays additional roles in the cell. We isolated nucleoli using fluorescence-activated cell sorting (FACS) and identified nucleolus-associated chromatin domains (NADs) by deep sequencing, comparing wild-type plants and null mutants for the nucleolar protein NUCLEOLIN 1 (NUC1). NADs are primarily genomic regions with heterochromatic signatures and include transposable elements (TEs), sub-telomeric regions, and mostly inactive protein-coding genes. However, NADs also include active rRNA genes and the entire short arm of chromosome 4 adjacent to them. In nuc1 null mutants, which alter rRNA gene expression and overall nucleolar structure, NADs are altered, telomere association with the nucleolus is decreased, and telomeres become shorter. Collectively, our studies reveal roles for NUC1 and the nucleolus in the spatial organization of chromosomes as well as telomere maintenance.


Assuntos
Expressão Gênica , Genoma de Planta , Heterocromatina/metabolismo , RNA Ribossômico/metabolismo , Telômero/metabolismo , Arabidopsis , Nucléolo Celular/metabolismo , DNA Ribossômico/genética , Heterocromatina/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/genética , Nucleolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...