Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18700, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333399

RESUMO

Pollinator conservation is a global priority. Efforts are taken to restore pollinators by improving flower resources, a crucial driver of pollinator diversity and population growth. It helped gardening and landscaping supply chains, which introduced lists of bee-friendly plants and bee hotels, yet, desirable results seem distant. One shortcoming of the present schemes is that they lack a cohesive planning for nesting opportunities and nesting provisions for wild solitary bees, the crucial pollinators of crop and wild plants. We tested whether the world's popular ornamental plant, rose (Rosa chinensis Jacq.)-a hitherto unlisted bee-friendly plant-can aid in conserving leafcutter bees, which require fresh leaves for constructing nest cells. We surveyed 2360 rose plants in 136 sites in rural and urban places and lowlands and highlands of south (8°N-12°N) and northeastern India (26°N-27°N) for the characteristic notches the bees leave on foraged leaves. We reared brood constructed with rose and non-rose leaves to examine the brood success rate. About a quarter of all the roses surveyed had the notches of leafcutter bees on the leaves. However, the proportion of cut roses varied considerably among sites. Bees used roses much higher in urban areas and lowlands than in rural areas and highlands. The selection of plants was negatively associated with pesticide application. The brood success rate was 100% for the brood that was constructed by the leaves of rose and non-rose plants. Rose flowers do not support bees, but rose leaves indeed do. We recommend rose plants in leafcutter bee conservation and restoration schemes, particularly in urban environment.


Assuntos
Flores , Polinização , Abelhas , Animais , Plantas , Índia
2.
Theriogenology ; 161: 313-331, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33373934

RESUMO

Adequate vascularisation is a key factor for successful fetal development. We hypothesized that Insulin-Like Growth Factor (IGF) family members regulate angiogenesis along with promoting fetal development and growth. In this experiment, we determined the expression and functional role of IGF family in placental compartments (caruncle; CAR, cotyledon; COT) during different stages of early pregnancy in the water buffalo (Bubalus bubalis). Samples were collected from early pregnancy 1 (EP1, 28-45 days), early pregnancy 2 (EP2, 45-90 days), and third stage of estrous cycle (11-16 days), which was taken as control. In addition, the role of IGF1 on mRNA expression of vWF, StAR, CYP11A1, 3ßHSD, PCNA, and BAX were elucidated in cultured trophoblast cells (TCC) obtained from EP2. Quantitative real-time PCR (q-PCR), westernblot, and immunohistochemistry were done to investigate the gene expression, protein expression, and localization of examined factors, and RIA was also done to assess progesterone (P4) concentration. Expression of IGFs, its receptors and binding proteins were found to be significantly higher (p < 0.05) in both CAR and COT as compared to control during early pregnancy, except binding proteins IGFBP1, 3 and 4 which were significantly (p < 0.05) downregulated in COT with advancement of pregnancy. mRNA expression was consistent with the findings of immunoblotting and immunolocalization experiments. Trophoblasts cell culture (TCC) study showed a significant time and dose-dependent effect of IGF1 onsteroidogenic transcript, which was found to be maximum at 100 ng/ml that paralleled with P4 accretion in the media (p < 0.05). Further, IGF1 upregulated the transcripts of vWF, PCNA, and downregulated BAX at the same concentration (p < 0.05). Overall, our results demonstrated that the expression of IGFs is a site-specific phenomenon in placentome, which indicates autocrine/paracrine and endocrine function. Our in-vitro finding support that IGF1 plays a critical role in placental development by promoting angiogenesis, steroid synthesis, and cell proliferation during early pregnancy.


Assuntos
Búfalos , Placenta , Animais , Feminino , Placentação , Gravidez , Progesterona , Trofoblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...