Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Phys ; 130(11)2021.
Artigo em Inglês | MEDLINE | ID: mdl-36733463

RESUMO

Gate-defined quantum dots (QD) benefit from the use of small grain size metals for gate materials because it aids in shrinking the device dimensions. However, it is not clear what differences arise with respect to process-induced defect densities and inhomogeneous strain. Here, we present measurements of fixed charge, Q f , interface trap density, D it , the intrinsic film stress, σ, and the coefficient of thermal expansion, α as a function of forming gas anneal temperature for Al, Ti/Pd, and Ti/Pt gates. We show D it is minimal at an anneal temperature of 350 °C for all materials but Ti/Pd and Ti/Pt have higher Q f and D it compared to Al. In addition, σ and α increase with anneal temperature for all three metals with α larger than the bulk value. These results indicate that there is a tradeoff between minimizing defects and minimizing the impact of strain in quantum device fabrication.

2.
Org Electron ; 612018.
Artigo em Inglês | MEDLINE | ID: mdl-30983924

RESUMO

The transport properties of electronic devices made from single crystalline molecular semiconductors typically outperform those composed of thin-films of the same material. To further understand the superiority of these extrinsic device properties, an understanding of the intrinsic electronic structure and properties of the organic semiconductor is necessary. An investigation of the electronic structure and properties of single crystal α-phase perylene (C20H12), a five-ringed aromatic molecule, is presented using angle-resolved ultraviolet photoemission, x-ray photoelectron spectroscopy (XPS), and field-effect transistor measurements. Key aspects of the electronic structure of single crystal α-perylene critical to charge transport are determined, including the energetic location of the highest occupied molecular orbital (HOMO), the HOMO bandwidth, and surface work function. In addition, using high resolution XPS, we can distinguish between inequivalent carbon atoms within the perylene crystal and, from the shake-up satellite structure in XPS, gain insight into the intramolecular properties in α-perylene. From the device measurements, the charge carrier mobility of α-perylene is found to depend on the device structure and the choice of dielectric, with values in the range of 10-3 cm2 V-1 s-1.

3.
ECS Trans ; 80(1): 119-131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29276553

RESUMO

Innovation in the electronics industry is tied to interface engineering as devices increasingly incorporate new materials and shrink. Molecular layers offer a versatile means of tuning interfacial electronic, chemical, physical, and magnetic properties enabled by a wide variety of molecules available. This paper will describe three instances where we manipulate molecular interfaces with a specific focus on the nanometer scale characterization and the impact on the resulting performance. The three primary themes include, 1-designer interfaces, 2-electronic junction formation, and 3-advancing metrology for nanoelectronics. We show the ability to engineer interfaces through a variety of techniques and demonstrate the impact on technologies such as molecular memory and spin injection for organic electronics. Underpinning the successful modification of interfaces is the ability to accurately characterize the chemical and electronic properties and we will highlight some measurement advances key to our understanding of the interface engineering for nanoelectronics.

4.
J Phys Condens Matter ; 28(9): 094009, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26871549

RESUMO

Reduction-oxidation (redox) active molecules hold potential for memory devices due to their many unique properties. We report the use of a novel diruthenium-based redox molecule incorporated into a non-volatile Flash-based memory device architecture. The memory capacitor device structure consists of a Pd/Al2O3/molecule/SiO2/Si structure. The bulky ruthenium redox molecule is attached to the surface by using a 'click' reaction and the monolayer structure is characterized by x-ray photoelectron spectroscopy to verify the Ru attachment and molecular density. The 'click' reaction is particularly advantageous for memory applications because of (1) ease of chemical design and synthesis, and (2) provides an additional spatial barrier between the oxide/silicon to the diruthenium molecule. Ultraviolet photoelectron spectroscopy data identified the energy of the electronic levels of the surface before and after surface modification. The molecular memory devices display an unsaturated charge storage window attributed to the intrinsic properties of the redox-active molecule. Our findings demonstrate the strengths and challenges with integrating molecular layers within solid-state devices, which will influence the future design of molecular memory devices.

5.
J Phys Chem B ; 116(46): 13757-64, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23106147

RESUMO

Resonant inelastic soft X-ray scattering (RIXS) has been used to study the electronic structure of glycine and lysine in aqueous solution. Upon variation of the pH value of the solution from acidic to basic, major changes of the nitrogen K edge RIXS data are observed for both amino acids, which are associated with the protonation and deprotonation of the amino groups. The experimental results are compared with simulations based on density functional theory, yielding a detailed understanding of the spectral changes, as well as insights into the ultrafast proton dynamics in the intermediate core-excited/ionized state of the RIXS process.


Assuntos
Glicina/química , Lisina/química , Prótons , Teoria Quântica , Água/química , Concentração de Íons de Hidrogênio , Espalhamento de Radiação , Raios X
6.
Rev Sci Instrum ; 80(12): 123102, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20059126

RESUMO

We present a novel synchrotron endstation with a flow-through liquid cell designed to study the electronic structure of liquids using soft x-ray spectroscopies. In this cell, the liquid under study is separated from the vacuum by a thin window membrane, such that the sample liquid can be investigated at ambient pressure. The temperature of the probing volume can be varied in a broad range and with a fast temperature response. The optimized design of the cell significantly reduces the amount of required sample liquid and allows the use of different window membrane types necessary to cover a broad energy range. The liquid cell is integrated into the solid and liquid spectroscopic analysis (SALSA) endstation that includes a high-resolution, high-transmission x-ray spectrometer and a state-of-the-art electron analyzer. The modular design of SALSA also allows the measurement of solid-state samples. The capabilities of the liquid cell and the x-ray spectrometer are demonstrated using a resonant inelastic x-ray scattering map of a 25 wt % NaOD solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...