Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 13(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36653023

RESUMO

The Germinal Center Kinase III (GckIII) pathway is a Hippo-like kinase module defined by sequential activation of Ste20 kinases Thousand and One (Tao) and GckIII, followed by nuclear dbf2-related (NDR) kinase Tricornered (Trc). We previously uncovered a role for the GckIII pathway in Drosophila melanogaster tracheal (respiratory) tube morphology. The trachea form a network of branched epithelial tubes essential for oxygen transport, and are structurally analogous to branched tubular organs in vertebrates, such as the vascular system. In the absence of GckIII pathway function, aberrant dilations form in tracheal tubes characterized by mislocalized junctional and apical proteins, suggesting that the pathway is important in maintaining tube integrity in development. Here, we observed a genetic interaction between trc and Cerebral cavernous malformations 3 (Ccm3), the Drosophila ortholog of a human vascular disease gene, supporting our hypothesis that the GckIII pathway functions downstream of Ccm3 in trachea, and potentially in the vertebrate cerebral vasculature. However, how GckIII pathway signaling is regulated and the mechanisms that underpin its function in tracheal development are unknown. We undertook biochemical and genetic approaches to identify proteins that interact with Trc, the most downstream GckIII pathway kinase. We found that known GckIII and NDR scaffold proteins are likely to control GckIII pathway signaling in tracheal development, consistent with their conserved roles in Hippo-like modules. Furthermore, we show genetic interactions between trc and multiple enzymes in glycolysis and oxidative phosphorylation, suggesting a potential function of the GckIII pathway in integrating cellular energy requirements with maintenance of tube integrity.


Assuntos
Proteínas de Drosophila , Proteínas Serina-Treonina Quinases , Animais , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Quinases do Centro Germinativo/genética , Quinases do Centro Germinativo/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
2.
J Neurosci ; 40(9): 1819-1833, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31964717

RESUMO

Dendritic arborization is highly regulated and requires tight control of dendritic growth, branching, cytoskeletal dynamics, and ion channel expression to ensure proper function. Abnormal dendritic development can result in altered network connectivity, which has been linked to neurodevelopmental disorders, including autism spectrum disorders (ASDs). How neuronal growth control programs tune dendritic arborization to ensure function is still not fully understood. Using Drosophila dendritic arborization (da) neurons as a model, we identified the conserved Ste20-like kinase Tao as a negative regulator of dendritic arborization. We show that Tao kinase activity regulates cytoskeletal dynamics and sensory channel localization required for proper sensory function in both male and female flies. We further provide evidence for functional conservation of Tao kinase, showing that its ASD-linked human ortholog, Tao kinase 2 (Taok2), could replace Drosophila Tao and rescue dendritic branching, dynamic microtubule alterations, and behavioral defects. However, several ASD-linked Taok2 variants displayed impaired rescue activity, suggesting that Tao/Taok2 mutations can disrupt sensory neuron development and function. Consistently, we show that Tao kinase activity is required in developing and as well as adult stages for maintaining normal dendritic arborization and sensory function to regulate escape and social behavior. Our data suggest an important role for Tao kinase signaling in cytoskeletal organization to maintain proper dendritic arborization and sensory function, providing a strong link between developmental sensory aberrations and behavioral abnormalities relevant for Taok2-dependent ASDs.SIGNIFICANCE STATEMENT Autism spectrum disorders (ASDs) are linked to abnormal dendritic arbors. However, the mechanisms of how dendritic arbors develop to promote functional and proper behavior are unclear. We identified Drosophila Tao kinase, the ortholog of the ASD risk gene Taok2, as a regulator of dendritic arborization in sensory neurons. We show that Tao kinase regulates cytoskeletal dynamics, controls sensory ion channel localization, and is required to maintain somatosensory function in vivo Interestingly, ASD-linked human Taok2 mutations rendered it nonfunctional, whereas its WT form could restore neuronal morphology and function in Drosophila lacking endogenous Tao. Our findings provide evidence for a conserved role of Tao kinase in dendritic development and function of sensory neurons, suggesting that aberrant sensory function might be a common feature of ASDs.


Assuntos
Citoesqueleto/fisiologia , Dendritos/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Sensação/fisiologia , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Citoesqueleto/ultraestrutura , Dendritos/ultraestrutura , Drosophila , Reação de Fuga , Feminino , Humanos , Masculino , Mecanorreceptores/fisiologia , Mutação/genética , Comportamento Social
3.
Dev Cell ; 47(5): 564-575.e5, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30458981

RESUMO

Hippo-like pathways are ancient signaling modules first identified in yeasts. The best-defined metazoan module forms the core of the Hippo pathway, which regulates organ size and cell fate. Hippo-like kinase modules consist of a Sterile 20-like kinase, an NDR kinase, and non-catalytic protein scaffolds. In the Hippo pathway, the upstream kinase Hippo can be activated by another kinase, Tao-1. Here, we delineate a related Hippo-like signaling module that Tao-1 regulates to control tracheal morphogenesis in Drosophila melanogaster. Tao-1 activates the Sterile 20-like kinase GckIII by phosphorylating its activation loop, a mode of regulation that is conserved in humans. Tao-1 and GckIII act upstream of the NDR kinase Tricornered to ensure proper tube formation in trachea. Our study reveals that Tao-1 activates two related kinase modules to control both growth and morphogenesis. The Hippo-like signaling pathway we have delineated has a potential role in the human vascular disease cerebral cavernous malformation.


Assuntos
Morfogênese , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Traqueia/embriologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Quinases do Centro Germinativo , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinases/genética , Traqueia/metabolismo
4.
Int J Mol Sci ; 19(6)2018 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-29861494

RESUMO

The Ras oncogene (Rat Sarcoma oncogene, a small GTPase) is a key driver of human cancer, however alone it is insufficient to produce malignancy, due to the induction of cell cycle arrest or senescence. In a Drosophila melanogaster genetic screen for genes that cooperate with oncogenic Ras (bearing the RasV12 mutation, or RasACT), we identified the Drosophila Src (Sarcoma virus oncogene) family non-receptor tyrosine protein kinase genes, Src42A and Src64B, as promoting increased hyperplasia in a whole epithelial tissue context in the Drosophila eye. Moreover, overexpression of Src cooperated with RasACT in epithelial cell clones to drive neoplastic tumourigenesis. We found that Src overexpression alone activated the Jun N-terminal Kinase (JNK) signalling pathway to promote actin cytoskeletal and cell polarity defects and drive apoptosis, whereas, in cooperation with RasACT, JNK led to a loss of differentiation and an invasive phenotype. Src + RasACT cooperative tumourigenesis was dependent on JNK as well as Phosphoinositide 3-Kinase (PI3K) signalling, suggesting that targeting these pathways might provide novel therapeutic opportunities in cancers dependent on Src and Ras signalling.


Assuntos
Carcinogênese , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Diferenciação Celular , Polaridade Celular , Olho Composto de Artrópodes/enzimologia , Olho Composto de Artrópodes/metabolismo , Olho Composto de Artrópodes/patologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Epitélio/enzimologia , Epitélio/metabolismo , Epitélio/fisiopatologia , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas pp60(c-src)/fisiologia , Proteínas ras/fisiologia
5.
Curr Biol ; 26(8): 1034-42, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-26996505

RESUMO

A key question in developmental neurobiology is how neural stem cells regulate their proliferative potential and cellular diversity and thus specify the overall size of the brain. Drosophila melanogaster neural stem cells (neuroblasts) are known to regulate their ability to self-renew by asymmetric cell division and produce different types of neurons and glia through sequential expression of temporal transcription factors [1]. Here, we show that the conserved Hippo pathway, a key regulator of epithelial organ size [2-4], restricts neuroblast proliferative potential and neuronal cell number to regulate brain size. The inhibition of Hippo pathway activity via depletion of the core kinases Tao-1, Hippo, or Warts regulates several key characteristics of neuroblasts during postembryonic neurogenesis. The Hippo pathway is required to maintain timely entry and exit from neurogenesis by regulating both neuroblast reactivation from quiescence and the time at which neuroblasts undergo terminal differentiation. Further, it restricts neuroblast cell-cycle speed, specifies cell size, and alters the proportion of neuron types generated during postembryonic neurogenesis. Collectively, deregulation of Hippo signaling in neuroblasts causes a substantial increase in overall brain size. We show that these effects are mediated via the key downstream transcription co-activator Yorkie and that, indeed, Yorkie overexpression in neuroblasts is sufficient to cause brain overgrowth. These studies reveal a novel mechanism that controls stem cell proliferative potential during postembryonic neurogenesis to regulate brain size.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Transdução de Sinais , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neurais/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Tamanho do Órgão , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas de Sinalização YAP
6.
Biol Open ; 4(8): 1024-39, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26187947

RESUMO

The deregulation of cell polarity or cytoskeletal regulators is a common occurrence in human epithelial cancers. Moreover, there is accumulating evidence in human epithelial cancer that BTB-ZF genes, such as Bcl6 and ZBTB7A, are oncogenic. From our previous studies in the vinegar fly, Drosophila melanogaster, we have identified a cooperative interaction between a mutation in the apico-basal cell polarity regulator Scribble (Scrib) and overexpression of the BTB-ZF protein Abrupt (Ab). Herein, we show that co-expression of ab with actin cytoskeletal regulators, RhoGEF2 or Src64B, in the developing eye-antennal epithelial tissue results in the formation of overgrown amorphous tumours, whereas ab and DRac1 co-expression leads to non-cell autonomous overgrowth. Together with ab, these genes affect the expression of differentiation genes, resulting in tumours locked in a progenitor cell fate. Finally, we show that the expression of two mammalian genes related to ab, Bcl6 and ZBTB7A, which are oncogenes in mammalian epithelial cancers, significantly correlate with the upregulation of cytoskeletal genes or downregulation of apico-basal cell polarity neoplastic tumour suppressor genes in colorectal, lung and other human epithelial cancers. Altogether, this analysis has revealed that upregulation of cytoskeletal regulators cooperate with Abrupt in Drosophila epithelial tumorigenesis, and that high expression of human BTB-ZF genes, Bcl6 and ZBTB7A, shows significant correlations with cytoskeletal and cell polarity gene expression in specific epithelial tumour types. This highlights the need for further investigation of the cooperation between these genes in mammalian systems.

7.
Curr Biol ; 25(1): 124-30, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25484297

RESUMO

The Salvador-Warts-Hippo (Hippo) pathway is a conserved regulator of organ size and is deregulated in human cancers. In epithelial tissues, the Hippo pathway is regulated by fundamental cell biological properties, such as polarity and adhesion, and coordinates these with tissue growth. Despite its importance in disease, development, and regeneration, the complete set of proteins that regulate Hippo signaling remain undefined. To address this, we used proteomics to identify proteins that bind to the Hippo (Hpo) kinase. Prominent among these were PAK-interacting exchange factor (known as Pix or RtGEF) and G-protein-coupled receptor kinase-interacting protein (Git). Pix is a conserved Rho-type guanine nucleotide exchange factor (Rho-GEF) homologous to Beta-PIX and Alpha-PIX in mammals. Git is the single Drosophila melanogaster homolog of the mammalian GIT1 and GIT2 proteins, which were originally identified in the search for molecules that interact with G-protein-coupled receptor kinases. Pix and Git form an oligomeric scaffold to facilitate sterile 20-like kinase activation and have also been linked to GTPase regulation. We show that Pix and Git regulate Hippo-pathway-dependent tissue growth in D. melanogaster and that they do this in parallel to the known upstream regulator Fat cadherin. Pix and Git influence activity of the Hpo kinase by acting as a scaffold complex, rather than enzymes, and promote Hpo dimerization and autophosphorylation of Hpo's activation loop. Therefore, we provide important new insights into an ancient signaling network that controls the growth of metazoan tissues.


Assuntos
Proteínas de Drosophila/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Crescimento/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Animais , Dimerização , Drosophila melanogaster , Feminino , Proteínas Ativadoras de GTPase , Masculino , Transdução de Sinais
8.
Sci Signal ; 6(259): pe4, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23354686

RESUMO

An important regulator of organ size and tumorigenesis is the Hippo pathway. Recent studies have unveiled increasing complexity in regulation of Hippo pathway activity at the level of the oncoprotein Yes-associated protein (YAP). The protein tyrosine phosphatase 14 (PTPN14, known as Pez in Drosophila) was identified as a protein that antagonizes the function of the key Hippo pathway protein YAP by promoting its cytoplasmic localization under high cell density conditions. In Drosophila, Pez was identified as a repressor of epithelial proliferation in vivo. Studies in mammalian cells showed that a family of G protein-coupled receptors, the protease-activated receptors, functioned as activators of YAP. These studies shed light on the intricate regulation of the Hippo pathway and also highlight the importance of investigating these newly discovered regulatory links in physiological and pathological settings to fully appreciate their importance.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Animais , Proliferação de Células , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Fosfatases/genética , Transativadores/genética , Proteínas de Sinalização YAP
9.
Curr Biol ; 22(17): 1587-94, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22840515

RESUMO

The Salvador-Warts-Hippo (SWH) pathway is an evolutionarily conserved regulator of tissue growth that is deregulated in human cancer. Upstream SWH pathway components convey signals from neighboring cells via a core kinase cassette to the transcription coactivator Yorkie (Yki). Yki controls tissue growth by modulating activity of transcription factors including Scalloped (Sd). To date, five SWH pathway kinases have been identified, but large-scale phosphoproteome studies suggest that unidentified SWH pathway kinases exist. To identify such kinases, we performed an RNA interference screen and isolated homeodomain-interacting protein kinase (Hipk). Unlike previously identified SWH pathway kinases, Hipk is unique in its ability to promote, rather than repress, Yki activity and does so in parallel to the Yki-repressive kinase, Warts (Wts). Hipk is required for basal Yki activity and is likely to regulate Yki function by promoting its accumulation in the nucleus. Like many SWH pathway proteins, Hipk's function is evolutionarily conserved as its closest human homolog, HIPK2, promotes activity of the Yki ortholog YAP in a kinase-dependent fashion. Further, HIPK2 promotes YAP abundance, suggesting that the mechanism by which HIPK2 regulates YAP has diverged in mammals.


Assuntos
Apoptose/genética , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/genética , Animais , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , RNA Mensageiro , Transativadores/metabolismo , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Proteínas de Sinalização YAP
10.
Dev Cell ; 21(5): 896-906, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22075148

RESUMO

The Salvador-Warts-Hippo (SWH) pathway is a complex signaling network that controls both developmental and regenerative tissue growth. Using a genetic screen in Drosophila melanogaster, we identified the sterile 20-like kinase, Tao-1, as an SWH pathway member. Tao-1 controls various biological phenomena, including microtubule dynamics, animal behavior, and brain development. Here we describe a role for Tao-1 as a regulator of epithelial tissue growth that modulates activity of the core SWH pathway kinase cassette. Tao-1 functions together with Hippo to activate Warts-mediated repression of Yorkie. Tao-1's ability to control SWH pathway activity is evolutionarily conserved because human TAO1 can suppress activity of the Yorkie ortholog, YAP. Human TAO1 controls SWH pathway activity by phosphorylating, and activating, the Hippo ortholog, MST2. Given that SWH pathway activity is subverted in many human cancers, our findings identify human TAO kinases as potential tumor suppressor genes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Epitélio/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Sequência Conservada , Drosophila melanogaster/enzimologia , Epitélio/metabolismo , Olho/crescimento & desenvolvimento , Feminino , Humanos , Proteínas Nucleares/metabolismo , Serina-Treonina Quinase 3 , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento , Proteínas de Sinalização YAP
11.
J Cell Physiol ; 210(1): 212-23, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17013812

RESUMO

The AF6/afadin protein is a component of cell membranes at specialized sites of cell-cell contact. Two main splice variants exist, known as l- and s-afadin, respectively. L-afadin is widely expressed in cells of epithelial origin, whilst s-afadin expression is restricted to the brain. Here we demonstrate that the short form of AF6/s-afadin is a dual residency protein able to localize to the plasma membrane or nucleus whilst the long form of AF6, l-afadin is unable to localize to the nucleus. AF6/s-afadin clusters in a distinctive speckled pattern in the nucleus, but is unable to do so when cell cycle progression is inhibited at the G(1)/S or G(2)/M checkpoints. The formation of AF6/s-afadin nuclear bodies is also sensitive to the transcriptional activity of the cell with inhibition of RNA polymerase activity abolishing AF6/s-afadin nuclear clustering. AF6/s-afadin nuclear bodies localize to a novel subnuclear compartment, failing to colocalize with other known nuclear bodies. Formation of the AF6/s-afadin nuclear foci can be regulated by specific growth factor receptor mediated signaling events and by cytoplasmic tyrosine kinases, but does not correlate with tyrosine phosphorylation of AF6/s-afadin. AF6/s-afadin is a candidate for mediating control of cellular growth processes by regulated translocation to the nucleus.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Cinesinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Miosinas/metabolismo , Processamento Alternativo , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Estruturas do Núcleo Celular/metabolismo , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Cães , Proteínas de Fluorescência Verde/genética , Humanos , Cinesinas/genética , Proteínas com Domínio LIM , Proteínas dos Microfilamentos/genética , Moduladores de Mitose/farmacologia , Miosinas/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Oligopeptídeos , Peptídeos/genética , Fosforilação , Transporte Proteico/efeitos dos fármacos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Ratos , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Transfecção
12.
J Hepatol ; 44(4): 758-67, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16478641

RESUMO

BACKGROUND/AIMS: The developed liver is able to tightly control cellular proliferation, rapidly switching from quiescence to growth in response to specific stimuli. This suggests that growth inhibitors may be involved in the control of liver growth. We analyzed the role of the Spred-family of growth inhibitors in the liver. METHODS: We screened human EST databases for Spred-related sequences. Clones were isolated, sequenced, epitope-tagged and expressed. Subcellular localization of clones were determined and their effects on cellular signaling pathways analysed using specific antibodies. Cell cycle progression assays and protein interaction studies were initiated. Organ distribution of transcripts and their expression throughout liver development and in primary hepatocytes were recorded. RESULTS: We have identified a new, liver-restricted protein, Eve-3, containing a single Ena Vasp homology (EVH1) domain that can potently block activation of the Ras/MAPK pathway. Eve-3 is specific in inhibiting the Ras/MAPK pathway. Eve-3 can block serum-mediated cell cycle progression and its expression is highly regulated during liver development. CONCLUSIONS: The liver is the only organ that can regulate its growth and mass. Eve-3 may act as an inhibitor of proliferation pathways in the mature liver and be involved in modulating the unique regenerative capacity of this organ.


Assuntos
Inibidores do Crescimento/fisiologia , Fígado/química , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Repressoras/fisiologia , Proteínas ras/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica , Vetores Genéticos/análise , Vetores Genéticos/genética , Inibidores do Crescimento/análise , Inibidores do Crescimento/genética , Hepatócitos/química , Hepatócitos/citologia , Hepatócitos/fisiologia , Humanos , Fígado/crescimento & desenvolvimento , Fígado/fisiologia , Masculino , Dados de Sequência Molecular , Estrutura Terciária de Proteína/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/análise , Proteínas Repressoras/genética , Transfecção
13.
Biochem J ; 388(Pt 2): 445-54, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15683364

RESUMO

Sprouty and Spred {Sprouty-related EVH1 [Ena/VASP (vasodilator-stimulated phosphoprotein) homology 1] domain} proteins have been identified as antagonists of growth factor signalling pathways. We show here that Spred-1 and Spred-2 appear to have distinct mechanisms whereby they induce their effects, as the Sprouty domain of Spred-1 is not required to block MAPK (mitogen-activated protein kinase) activation, while that of Spred-2 is required. Similarly, deletion of the C-terminal Sprouty domain of Spred-1 does not affect cell-cycle progression of G(0)-synchronized cells through to S-phase following growth factor stimulation, while the Sprouty domain is required for Spred-2 function. We also demonstrate that the inhibitory function of Spred proteins is restricted to the Ras/MAPK pathway, that tyrosine phosphorylation is not required for this function, and that the Sprouty domain mediates heterodimer formation of Spred proteins. Growth-factor-mediated activation of the small GTPases, Ras and Rap1, was able to be regulated by Spred-1 and Spred-2, without affecting receptor activation. Taken together, these results highlight the potential for different functional roles of the Sprouty domain within the Spred family of proteins, suggesting that Spred proteins may use different mechanisms to induce inhibition of the MAPK pathway.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Repressoras/química , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Animais , Linhagem Celular , Dimerização , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Fosforilação , Estrutura Terciária de Proteína , Proteínas Repressoras/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...