Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 359: 52-68, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37220804

RESUMO

The combination of photothermal therapy and chemotherapy has been considered a promising strategy for improving the excellent antitumor activities of these treatments. In this study, we developed a new simple type of pH-sensitive chemo-photothermal combination agent capable of repeated exposures to a near-infrared (NIR) laser and evaluated its anticancer efficacy in vitro and in vivo. Doxorubicin (Dox) and gold nanoclusters (GNCs) were successfully co-loaded into pH-sensitive nanoparticles (poly(ethylene glycol)-poly[(benzyl-l-aspartate)-co-(N-(3-aminopropyl)imidazole-L-aspartamide)] (PEG-PABI)), resulting in a particle size of approximately120 nm with a narrow size distribution. The dual drug-loaded nanoparticles (Dox/GNC-loaded PEG-PABI micelles (Dox/GNC-Ms)) showed consistent pH-sensitive properties and heat generation efficiency after repeated NIR laser exposure. In particular, GNC-M has improved photothermal stability while maintaining high photothermal conversion efficiency, addressing the shortcomings of previous gold nanoparticles. As the concentration of GNC-Ms, irradiation light exposure time, and light source intensity increased, the amount of heat generated and the anticancer effect increased. When Dox was encapsulated with GNCs (Dox/GNC-Ms), a faster drug release rate under acidic pH conditions and a strong synergistic effect against U87MG cells were observed. When the Dox/GNC-M system was extended to in vivo studies, it effectively increased the temperature of the tumor tissue under near-infrared irradiation and showed excellent anticancer efficacy. Therefore, the Dox/GNC-M system could be a simple but promising strategy for chemo-photothermal combination treatment capable of targeting acidic tumors.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Ouro/química , Hipertermia Induzida/métodos , Nanopartículas Metálicas/química , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Doxorrubicina/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
3.
Small ; 18(4): e2103552, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34841670

RESUMO

Significant advances in physicochemical properties of polymeric micelles enable optimization of therapeutic drug efficacy, supporting nanomedicine manufacturing and clinical translation. Yet, the effect of micelle morphology on pharmacological efficacy is not adequately addressed. This work addresses this gap by assessing pharmacological efficacy of polymeric micelles with spherical and worm-like morphologies. It is observed that poly(2-oxazoline)-based polymeric micelles can be elongated over time from a spherical structure to worm-like structure, with elongation influenced by several conditions, including the amount and type of drug loaded into the micelles. The role of different morphologies on pharmacological performance of drug loaded micelles against triple-negative breast cancer and pancreatic cancer tumor models is further evaluated. Spherical micelles accumulate rapidly in the tumor tissue while retaining large amounts of drug; worm-like micelles accumulate more slowly and only upon releasing significant amounts of drug. These findings suggest that the dynamic character of the drug-micelle structure and the micelle morphology play a critical role in pharmacological performance, and that spherical micelles are better suited for systemic delivery of anticancer drugs to tumors when drugs are loosely associated with the polymeric micelles.


Assuntos
Antineoplásicos , Micelas , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Nanomedicina , Polímeros/química
4.
Adv Funct Mater ; 28(6)2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29785179

RESUMO

Brain-derived neurotrophic factor (BDNF) is identified as a potent neuroprotective and neuroregenerative agent for many neurological diseases. Regrettably, its delivery to the brain is hampered by poor serum stability and rapid brain clearance. Here, a novel nanoformulation is reported composed of a bio-compatible polymer, poly(ethylene glycol)-b-poly(L-glutamic acid) (PEG-PLE), that hosts the BDNF molecule in a nanoscale complex, termed here Nano-BDNF. Upon simple mixture, Nano-BDNF spontaneously forms uniform spherical particles with a core-shell structure. Molecular dynamics simulations suggest that binding between BDNF and PEG-PLE is mediated through electrostatic coupling as well as transient hydrogen bonding. The formation of Nano-BDNF complex stabilizes BDNF and protects it from nonspecific binding with common proteins in the body fluid, while allowing it to associate with its receptors. Following intranasal administration, the nanoformulation improves BDNF delivery throughout the brain and displays a more preferable regional distribution pattern than the native protein. Furthermore, intranasally delivered Nano-BDNF results in superior neuroprotective effects in the mouse brain with lipopolysaccharides-induced inflammation, indicating promise for further evaluation of this agent for the therapy of neurologic diseases.

5.
J Control Release ; 263: 172-184, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28344017

RESUMO

Leptin is an adipocyte-secreted hormone that is delivered via a specific transport system across the blood-brain barrier (BBB) to the brain where it acts on the hypothalamus receptors to control appetite and thermogenesis. Peripheral resistance to leptin due to its impaired brain delivery prevents therapeutic use of leptin in overweight and moderately obese patients. To address this problem, we modified the N-terminal amine of leptin with Pluronic P85 (LepNP85) and administered this conjugate intranasally using the nose-to-brain (INB) route to bypass the BBB. We compared this conjugate with the native leptin, the N-terminal leptin conjugate with poly(ethylene glycol) (LepNPEG5K), and two conjugates of leptin with Pluronic P85 attached randomly to the lysine amino groups of the hormone. Compared to the random conjugates of leptin with P85, LepNP85 has shown higher affinity upon binding with the leptin receptor, and similarly to native hormone activated hypothalamus receptors after direct injection into brain. After INB delivery, LepNP85 conjugate was transported to the brain and accumulated in the hypothalamus and hippocampus to a greater extent than the native leptin and LepNPEG5K and activated leptin receptors in hypothalamus at lower dose than native leptin. Our work suggests that LepNP85 can access the brain directly after INB delivery and confirms our hypothesis that the improvement in brain accumulation of this conjugate is due to its enhanced brain absorption. In conclusion, the LepNP85 with optimized conjugation chemistry is a promising candidate for treatment of obesity.


Assuntos
Encéfalo/metabolismo , Leptina/administração & dosagem , Poloxaleno/administração & dosagem , Administração Intranasal , Animais , Leptina/química , Leptina/farmacocinética , Masculino , Camundongos , Obesidade/tratamento farmacológico , Poloxaleno/química , Poloxaleno/farmacocinética , Receptores para Leptina/metabolismo
6.
J Phys Chem B ; 121(16): 4174-4183, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28346778

RESUMO

High-field deuterium NMR spectroscopy is used to characterize a number of molecular liquids and their mixtures in order to probe the directional part of the intermolecular interactions through the orientational ordering induced in the isotropic liquid phase by the spectrometer magnetic field. The systems studied include benzene, chloroform, hexafluorobenzene, and thiophene at various concentrations and in mixtures. Dilution with the magnetically isotropic tetramethylsilane provides quantification of ordering at "infinite magnetic dilution", that is, in the absence of magnetic intermolecular correlations, and thereby allows identification of the contribution of these correlations to the orientational ordering in neat phases and at various degrees of magnetic dilution. Such contributions are conveyed by angular pair correlation coefficients, which, in addition to being accessible to direct NMR measurement, are also possible to evaluate directly from molecular dynamics simulations. By using various force fields, simulations provide benchmark quantities for testing and possibly further improving the force field performance, particularly with respect to the directional components of the intermolecular interactions. The latter are critical for the simulation of self-assembly generally and particularly in biological systems.

7.
J Phys Chem Lett ; 6(18): 3626-31, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26722733

RESUMO

Deuterium nuclear magnetic resonance ((2)H NMR) spectra of labeled molecular liquids obtained at high fields, for example, |B| = 22.3 T (950 MHz proton NMR), exhibit resolved quadrupolar splittings that reflect the average orientation of the molecules relative to B. Those residual nuclear spin interactions exhibited by benzene and chloroform provide an experimental determination of the leading tensor component of the pair correlation function for these two molecular liquids. In this way, very high-field (2)H NMR may be used to extract unambiguous information about liquid-state structure. Additionally, replicating the experimentally derived pair correlation function using molecular dynamics simulations provides a critical test of simulation force fields.

8.
J Control Release ; 191: 34-46, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24881856

RESUMO

Modification of hydrophilic proteins with amphiphilic block copolymers capable of crossing cell membranes is a new strategy to improve protein delivery to the brain. Leptin, a candidate for the treatment of epidemic obesity, has failed in part because of impairment in its transport across the blood-brain barrier (BBB) that develops with obesity. We posit that modification of leptin with poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), Pluronic P85 (P85) might permit this protein to penetrate the BBB independently of its transporter, thereby overcoming peripheral leptin resistance. Here we report that peripherally administered leptin-P85 conjugates exhibit biological activity by reducing food intake in mouse models of obesity (ob/ob, and diet-induced obese mouse). We further generated two new leptin-P85 conjugates: one, Lep(ss)-P85(L), containing one P85 chain and another, Lep(ss)-P85(H), containing multiple P85 chains. We report data on their purification, analytical characterization, peripheral and brain pharmacokinetics (PK). Lep(ss)-P85(L) crosses the BBB using the leptin transporter, and exhibits improved peripheral PK along with increased accumulation in the brain compared to unmodified leptin. Lep(ss)-P85(H) also has improved peripheral PK but in a striking difference to the first conjugate penetrates the BBB independently of the leptin transporter via a non-saturable mechanism. The results demonstrate that leptin analogs can be developed through chemical modification of the native leptin with P85 to overcome leptin resistance at the level of the BBB, thus improving the potential for the treatment of obesity.


Assuntos
Fármacos Antiobesidade/farmacologia , Barreira Hematoencefálica/metabolismo , Portadores de Fármacos , Leptina/farmacologia , Obesidade/tratamento farmacológico , Poloxaleno/química , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/sangue , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacocinética , Peso Corporal/efeitos dos fármacos , Células Cultivadas , Química Farmacêutica , Modelos Animais de Doenças , Estabilidade de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Injeções Intravenosas , Injeções Subcutâneas , Leptina/administração & dosagem , Leptina/análogos & derivados , Leptina/sangue , Leptina/química , Leptina/farmacocinética , Masculino , Camundongos , Obesidade/sangue , Obesidade/fisiopatologia , Obesidade/psicologia , Permeabilidade , Tecnologia Farmacêutica/métodos
9.
J Org Chem ; 61(21): 7455-7462, 1996 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-11667674

RESUMO

The unique electronic and structural nature of the alpha-acylphosphonate functional group affords both dimeric and chelated complexes of diethyl crotonyl phosphonate (1; DECP) with stannic chloride (SnCl(4)). The dimeric complex, SnCl(4).(DECP)(2) (5) results from the coordination of two DECP molecules, ligated via the phosphoryl oxygens to the tin atom. The chelated complex, SnCl(4).(DECP) (6), is best represented with both phosphoryl and carbonyl oxygens coordinated to the metal center. Both metal ligated and chelated complexes have unique (13)C (31)P, and (119)Sn NMR spectra. In complex 5, the (13)C NMR resonances attributed to the carbonyl carbons were shifted upfield of free DECP. A monocoordinating Lewis acid, BF(3).OEt(2), produced a similar chemical shift trend in both the (13)C and (31)P NMR spectra of the BF(3).DECP complex. Essentially quantitative yields and moderate diastereomeric excesses favoring anti (or trans) diethyl 6-phenyl-4,5-dimethyl-6-(trimethylsilyloxy)-2-dihydropyranphosphonate (3) and diethyl 5-phenyl-3,4-dimethyl-1,5-dioxopentanephosphonate (4) were obtained from both chelated and dimeric SnCl(4).(DECP)(n) (n = 1, 2) when treated with either diastereomeric (Z)- or (E)-1-phenyl-1-(trimethylsilyloxy)-1-propene 2. Diethyl crotonylphosphonate (1), 3, and 4 were fully characterized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...