Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(41): 30011-30036, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39309645

RESUMO

This work demonstrates the impact of microwave (MW) irradiation on third-order nonlinear optical (NLO) processes in chemically deposited NiO nanostructure films. The optical nonlinearity of the NiO nanostructure films was studied using third-harmonic generation (THG) measurements in the pulsed femtosecond laser regime and the Z-scan technique in the continuous wave laser regime. In the ultrafast pulsed regime, THG measurements revealed a significant increase in the THG signal of MW-irradiated NiO nanostructures due to photoexcitation and relaxation processes, resulting from an enhancement in defect concentration. This increase in defect density upon MW irradiation was quantified by PL and XPS studies. Under continuous wave laser irradiation, the Z-scan technique showed an enhanced absorption coefficient of ∼10-1 m W-1 and a nonlinear refractive index of ∼10-7 m2 W-1. The high NLO values in both pulsed and continuous laser regimes indicate that MW-irradiated NiO nanostructure films hold promise for optoelectronic device applications.

2.
Nanoscale Adv ; 6(15): 3838-3849, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39050963

RESUMO

To understand the impact of binary doping in ZnO, nanosized Zn(Ag, Ni)O systems were synthesized by the sol-gel method. The amount of Ag was fixed at 2 at%, and that of Ni was varied from 1 to 15 at%. Ni incorporation equal to or beyond 3 at% gave rise to the development of the NiO phase. The presence of Ag and Ni did not have much influence on the lattice constants of ZnO. However, a larger addition of Ni impacted the unit cell of NiO, as indicated by the reduction of the lattice constant of NiO. The increase in NiO and Ag contents in ZnO reduced the second and third harmonic intensities under non-linear investigations. X-ray photoelectron spectroscopy analysis indicated that initial Ni addition varied randomly along with Ag, and it stabilized itself at higher concentration. Field emission scanning electron microscopy revealed that interlinked particles and chains with tamarind shapes were formed, closely matching the rod-like structures under high resolution. Ag and Ni addition altered the structures slightly and randomly till 5 at% Ni; thereafter they deviated from the particle shape to flat disc-shapes. Interestingly, the magnetic response of the sample was determined by the NiO phase, and the effect of Ni and Ag substitution in the ZnO host matrix was almost irrelevant at low temperatures toward magnetic contribution. Weak ferromagnetism at low temperatures (≤50 K) with superparamagnetic-like behavior (cusp in ZFC magnetization) was observed in all the samples. This could be attributed to the finite nano-size effect and uncompensated spins at the surface of the particle.

3.
Micromachines (Basel) ; 14(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37420965

RESUMO

Pristine WO3 and Zn-doped WO3 were synthesized using the spray pyrolysis technique to detect ammonia gas. The prominent orientation of the crystallites along the (200) plane was evident from X-ray diffraction (XRD) studies. Scanning Electron Microscope (SEM) morphology indicated well-defined grains upon Zn doping with a smaller grain size of 62 nm for Zn-doped WO3 (Zn: WO3) film. The photoluminescence (PL) emission at different wavelengths was assigned to defects such as oxygen vacancies, interstitial oxygens, localized defects, etc. X-ray Photoelectron spectroscopy (XPS) studies confirmed the formation of oxygen vacancies in the deposited films. The ammonia (NH3) sensing analysis of the deposited films was carried out at an optimum working temperature of 250 °C. The sensor performance of Zn: WO3 was enhanced compared to pristine WO3 at 1 ppm NH3 concentration, elucidating the possibility of the films in sensing applications.

4.
Sensors (Basel) ; 22(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271180

RESUMO

Ag-doped WO3 (Ag-WO3) films were deposited on a soda-lime glass substrate via a facile spray pyrolysis technique. The surface roughness of the films varied between 0.6 nm and 4.3 nm, as verified by the Atomic Force Microscopy (AFM) studies. Ammonia (NH3)-sensing measurements of the films were performed for various concentrations at an optimum sensor working temperature of 200 °C. Enrichment of oxygen vacancies confirmed by X-ray Photoelectron Spectroscopy (XPS) in 1% Ag-WO3 enhanced the sensor response from 1.06 to 3.29, approximately 3 times higher than that of undoped WO3. Limit of detection (LOD) up to 500 ppb is achieved for 1% Ag-WO3, substantiating the role of Ag in improving sensor performance.

5.
Nanomaterials (Basel) ; 11(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835915

RESUMO

In the present investigation, electron beam-influenced modifications on the CO gas sensing properties of indium doped ZnO (IZO) thin films were reported. Dose rates of 5, 10, and 15 kGy were irradiated to the IZO nano films while maintaining the In doping concentration to be 15 wt%. The wurtzite structure of IZO films is observed from XRD studies post electron beam irradiation, confirming structural stability, even in the intense radiation environment. The surface morphological studies by SEM confirms the granular structure with distinct and sharp grain boundaries for 5 kGy and 10 kGy irradiated films whereas the IZO film irradiated at 15 kGy shows the deterioration of defined grains. The presence of defects viz oxygen vacancies, interstitials are recorded from room temperature photoluminescence (RTPL) studies. The CO gas sensing estimations were executed at an optimized operating temperature of 300 °C for 1 ppm, 2 ppm, 3 ppm, 4 ppm, and 5 ppm. The 10 kGy treated IZO film displayed an enhanced sensor response of 2.61 towards low concentrations of 1 ppm and 4.35 towards 5 ppm. The enhancement in sensor response after irradiation is assigned to the growth in oxygen vacancies and well-defined grain boundaries since the former and latter act as vital adsorption locations for the CO gas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA