Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005073

RESUMO

This research work aims to develop functional toothpastes with combined enamel remineralization and antibacterial effects using nano-hydroxyapatites (nHAPs) and birch extract. Eleven toothpastes (notated as P1-P11) were designed featuring different concentrations of birch extract and a constant concentration of pure nHAPs or substituted nHAPs (HAP-5%Zn, HAP-0.23%Mg-3.9%Zn-2%Si-10%Sr, and HAP-2.5%Mg-2.9%Si-1.34%Zn). In vitro assessments involved treating artificially demineralized enamel slices and analyzing surface repair and remineralization using Atomic Force Microscopy (AFM). The Agar Disk Diffusion method was used to measure antibacterial activity against Enterococcus faecalis, Escherichia coli, Porphyromonas gingivalis, Streptococcus mutans, and Staphylococcus aureus. Topographic images of enamel structure and surface roughness, as well as the ability of nHAP nanoparticles to form self-assembled layers, revealed excellent restorative properties of the tested toothpastes, with enamel nanostructure normalization occurring as soon as 10 days after treatment. The outcomes highlighted enamel morphology improvements due to the toothpaste treatment also having various efficacious antibacterial effects. Promising results were obtained using P5 toothpaste, containing HAP-5%Zn (3.4%) and birch extract (1.3%), indicating notable remineralization and good antibacterial properties. This study represents a significant advancement in oral care by introducing toothpaste formulations that simultaneously promote enamel health through effective remineralization and bacterial inhibition.

2.
Biomimetics (Basel) ; 8(6)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887581

RESUMO

This work aimed to compare the effect of four new toothpastes (P1-P4) based on pure and biomimetic substituted nano-hydroxyapatites (HAPs) on remineralization of human enamel. Artificially demineralized enamel slices were daily treated for ten days with different toothpastes according to the experimental design. Tooth enamel surfaces were investigated using atomic force microscope (AFM) images and surface roughness (Ra) determined before and after treatment. The surface roughness of enamel slices was statistically analyzed by one-way ANOVA and Bonferroni's multiple comparison test. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) data revealed the HAP structure with crystal sizes between 28 and 33 nm and crystallinity between 29 and 37%. The average size of HAP particles was found to be between 30 and 40 nm. The Ra values indicated that P3 (HAP-Mg-Zn-Sr-Si) toothpaste was the most effective after 10 days of treatment, leading to the lowest mean roughness. The P3 and P2 (HAP) toothpastes were found to be effective in promoting remineralization. Specifically, their effectiveness can be ranked as follows: P3 = P2 > P4 (HAP-Mg-Zn-Si) > P1 (HAP-Zn), considering both the chemical composition and the size of their constitutive nanoparticles. The proposed toothpastes might be used successfully to treat early tooth decay.

3.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296447

RESUMO

Curcumin (CCM) is one of the most frequently explored plant compounds with various biological actions such as antibacterial, antiviral, antifungal, antineoplastic, and antioxidant/anti-inflammatory properties. The laboratory data and clinical trials have demonstrated that the bioavailability and bioactivity of curcumin are influenced by the feature of the curcumin molecular complex types. Curcumin has a high capacity to form molecular complexes with proteins (such as whey proteins, bovine serum albumin, ß-lactoglobulin), carbohydrates, lipids, and natural compounds (e.g., resveratrol, piperine, quercetin). These complexes increase the bioactivity and bioavailability of curcumin. The current review provides these derivatization strategies for curcumin in terms of biological and physico-chemical aspects with a strong focus on different type of proteins, characterization methods, and thermodynamic features of protein-curcumin complexes, and with the aim of evaluating the best performances. The current literature review offers, taking into consideration various biological effects of the CCM, a whole approach for CCM-biomolecules interactions such as CCM-proteins, CCM-nanomaterials, and CCM-natural compounds regarding molecular strategies to improve the bioactivity as well as the bioavailability of curcumin in biological systems.


Assuntos
Antineoplásicos , Curcumina , Curcumina/farmacologia , Curcumina/química , Disponibilidade Biológica , Antioxidantes/farmacologia , Antioxidantes/química , Resveratrol , Soroalbumina Bovina , Proteínas do Soro do Leite , Quercetina , Antifúngicos , Antineoplásicos/farmacologia , Lactoglobulinas/química , Lipídeos , Antivirais , Carboidratos , Antibacterianos
4.
J Nanosci Nanotechnol ; 21(4): 2269-2277, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33500043

RESUMO

The purpose of this review is to provide an overview of the available gypsum based composite including various phase change materials employed to increase the thermal energy storage capacity of building materials. A wide range of materials such as n-alkane, saturated fatty acid, fatty acid esters etc are used as phase change materials. Adding carbonaceous material (carbon nanofibers, activated nanocarbon, graphite nanosheets etc.) to augment some properties is also a common practice. In addition, there are presented the methods of obtaining the nano/macro-composites together with some thermal characteristics of the newly prepared materials.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30769154

RESUMO

Amikacin, a molecule formed by two glucosamine rings linked by α-linkages through a central deoxystreptamine, is an antibiotic often used in clinical treatments, with a special attention in the pediatric cases, due to the physiological activity of their renal system. In spite of its extensive use, no detailed information about the vibrational features of the molecule is available in the literature. Thus, in this study we performed a comprehensive vibrational investigation of amikacin from both an experimental and theoretical point of view. Raman and IR spectroscopy combined with DFT calculations conducted to a complete vibrational characterization of the molecule, with the assignment of the vibrational modes. Moreover, SERS spectrum was recorded and analyzed and provided information about the adsorption behavior of the amikacin on the silver nanoparticles surface.


Assuntos
Amicacina/química , Modelos Moleculares , Estrutura Molecular , Espectrofotometria Infravermelho , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...