Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958280

RESUMO

Entrapment neuropathies of the lower limb are a misunderstood and underdiagnosed group of disorders, characterized by pain and dysesthesia, muscular weakness, and specific provoking movements on physical examination. The most frequent of these syndromes encountered in clinical practice are fibular nerve entrapment, proximal tibial neuropathy, sural nerve neuropathy, deep gluteal syndrome or sciatic nerve entrapment, and lateral femoral cutaneous nerve entrapment, also known as meralgia paresthetica. These are commonly mistaken for lumbar plexopathies, radiculopathies, and musculotendinous diseases, which appear even more frequently and have overlapping clinical presentations. A comprehensive anamnesis, physical examination, and electrodiagnostic studies should help clarify the diagnosis. If the diagnosis is still unclear or a secondary cause of entrapment is suspected, magnetic resonance neurography, MRI, or ultrasonography should be conducted to clarify the etiology, rule out other diseases, and confirm the diagnosis. The aim of this narrative review was to help clinicians gain familiarity with this disease, with an increase in diagnostic confidence, leading to early diagnosis of nerve damage and prevention of muscle atrophy. We reviewed the epidemiology, anatomy, pathophysiology, etiology, clinical presentation, and EDX technique and interpretation of the entrapment neuropathies of the lower limb, using articles published from 1970 to 2022 included in the Pubmed, MEDLINE, Cochrane Library, Google Scholar, EMBASE, Web of Science, and Scopus databases.

2.
Brain Sci ; 13(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38002552

RESUMO

Traumatic brain injury (TBI) is a significant public health concern, often leading to long-lasting impairments in cognitive, motor and sensory functions. The rapid development of non-invasive systems has revolutionized the field of TBI rehabilitation by offering modern and effective interventions. This narrative review explores the application of non-invasive technologies, including electroencephalography (EEG), quantitative electroencephalography (qEEG), brain-computer interface (BCI), eye tracking, near-infrared spectroscopy (NIRS), functional near-infrared spectroscopy (fNIRS), magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) in assessing TBI consequences, and repetitive transcranial magnetic stimulation (rTMS), low-level laser therapy (LLLT), neurofeedback, transcranial direct current stimulation (tDCS), transcranial alternative current stimulation (tACS) and virtual reality (VR) as therapeutic approaches for TBI rehabilitation. In pursuit of advancing TBI rehabilitation, this narrative review highlights the promising potential of non-invasive technologies. We emphasize the need for future research and clinical trials to elucidate their mechanisms of action, refine treatment protocols, and ensure their widespread adoption in TBI rehabilitation settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...