Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 445: 138714, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394904

RESUMO

The unique profiles of betacyanins as well as their stability and antioxidant activity in purple leaf extracts of the fast-growing, soft-stemmed vine Basella alba L. var. 'Rubra', known as Malabar spinach, are partly characterized for the first time. The distribution of gomphrenin and its acylated derivatives in the leaves is completely different from the profiles of the pigments in the fruits. The most abundant acylated pigment in leaves (24%) turned out 6'-O-E-sinapoyl-gomphrenin (gandolin), however, the most significant difference in the pigment profiles is a presence of two novel pigments tentatively identified as highly abundant 6'-O-(3,4-dimethoxy-E-cinnamoyl)-gomphrenin and 6'-O-(3,4,5-trimethoxy-E-cinnamoyl)-gomphrenin as well as their isoforms. Significant degradation of the pigments in the fruit extracts under the impact of selected metal cations and UV-Vis irradiation as well as high protective activity of the leaf extract matrix were observed. Partial chromatographic purification of the leaf extract resulted in an increase of the pigment concentration which was correlated positively with the increased antioxidant activity of obtained fractions.


Assuntos
Antioxidantes , Caryophyllales , Antioxidantes/análise , Verduras , Spinacia oleracea , Betacianinas/química , Extratos Vegetais/química
2.
J Agric Food Chem ; 72(6): 2943-2962, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301126

RESUMO

The antioxidant and anti-inflammatory activities of acylated and decarboxylated gomphrenins, as well as Basella alba L. fruit extract, were investigated in relation to gomphrenin, known for its high biological potential. The most abundant natural acylated gomphrenins, namely, 6'-O-E-caffeoyl-gomphrenin (malabarin) and 6'-O-E-4-coumaroyl-gomphrenin (globosin), were isolated from B. alba extract for the studies. In addition, controlled thermal decarboxylation of gomphrenin in the purified B. alba extract at 65-75 °C resulted in the formation of the most prevalent decarboxylated products, including 17-decarboxy-gomphrenin and 2,17-bidecarboxy-gomphrenin, along with their isoforms. The structures of the decarboxylated pigments were confirmed by NMR analyses. Exploring the matrix effect on pigment reactivity revealed a tremendous increase in the stability of all betacyanins after the initial stage of extract purification using a cation exchanger under various conditions. This indicates the removal of a substantial portion of the unfavorable matrix from the extract, which presumably contains reactive species that could otherwise degrade the pigments. Furthermore, the high concentration of citrates played a significant role in favoring the formation of 2-decarboxy-gomphrenin to a considerable extent. In vitro screening experiments revealed that the tested compounds demonstrated strong anti-inflammatory properties in lipopolysaccharide (LPS)-activated human macrophages. This effect encompassed the selective inhibition of cytokine and chemokine release from activated macrophages, modulation of the chemotactic activity of immune cells, and the regulation of tissue remodeling mediators' release.


Assuntos
Betacianinas , Caryophyllales , Humanos , Betacianinas/química , Spinacia oleracea , Frutas/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise , Betalaínas/farmacologia , Betalaínas/química
3.
J Agric Food Chem ; 71(41): 15017-15034, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37791532

RESUMO

A comprehensive oxidation mechanism was investigated for amaranthin-type betacyanins with a specific glucuronosylglucosyl moiety isolated from Atriplex hortensis 'rubra' using liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry (LC-DAD-ESI-MS/MS) and LC-Quadrupole-Orbitrap-MS (LC-Q-Orbitrap-MS). By employing one-dimensional (1D) and two-dimensional (2D) NMR, this study elucidates the chemical structures of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS)-oxidized celosianins for the first time. These findings demonstrate alternative oxidation pathways for acylated betacyanins compared to well-known betanidin, betanin, and gomphrenin pigments. Contrary to previous research, we uncover the existence of 17-decarboxy-neo- and 2,17-bidecarboxy-xanneo-derivatives as the initial oxidation products without the expected 2-decarboxy-xan forms. These oxidized compounds demonstrated potent free radical scavenging properties. Celosianin (IC50 = 23 µg/mL) displayed slightly higher antioxidant activity compared to oxidized forms, 17-decarboxy-neocelosianin (IC50 = 34 µg/mL) and 2,17-bidecarboxy-xanneocelosianin (IC50 = 29 µg/mL). The oxidized compounds showed no cytotoxic effects on H9c2 rat cardiomyoblasts (0.1-100 µg/mL). Additionally, treatment of H9c2 cells with the oxidized compounds (0.1-10 µg/mL) elevated glutathione levels and exhibited protective effects against H2O2-induced cell death. These findings have significant implications for understanding the impact of oxidation processes on the structures and biological activities of acylated betalains, providing valuable insights for future studies of the bioavailability and biological mechanism of their action in vivo.


Assuntos
Atriplex , Betacianinas , Animais , Ratos , Betacianinas/farmacologia , Betacianinas/química , Antioxidantes/farmacologia , Antioxidantes/química , Spinacia oleracea , Espectrometria de Massas em Tandem , Peróxido de Hidrogênio , Cromatografia Líquida de Alta Pressão/métodos
4.
Sci Rep ; 13(1): 16808, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798349

RESUMO

The relatively low photon-to-current conversion efficiency of dye-sensitized solar cells is their major drawback limiting widespread application. Light harvesting, followed by a series of electron transfer processes, is the critical step in photocurrent generation. An in-depth understanding and fine optimization of those processes are crucial to enhance cell performance. In this work, we synthesize two new bi-ruthenium sensitizers with extended anchoring ligands to gain insight into underlying processes determining photovoltaic action mechanisms. The structure of the compounds has been confirmed, and their properties have been thoroughly examined by various techniques such as NMR, IR, elemental analysis UV-Vis, cyclic voltammetry, and electroabsorption. The experimental characterization has been supported and developed via extensive quantum-chemical calculations, giving a broad view of the presented molecules' properties. Finally, the DSSC devices have been assembled utilizing obtained dyes. The photovoltaic and EIS measurements, combined with performed calculations and fundamental dyes characterization, unraveled an intramolecular electron transfer as an initial step of the electron injection process at the dye/semiconductor interface. The overall photovoltaic action mechanism has been discussed. Our study demonstrates the significance of the anchoring group architecture in the molecular design of new sensitizers for DSSC applications.

5.
Phys Chem Chem Phys ; 25(27): 18481-18494, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37401852

RESUMO

The methoxy analogue of a trans-stilbene compound - 2,3,3',4'-tetramethoxy-trans-stilbene - was selected to characterize its crystallographic structure, intermolecular interactions and molecular dynamics. The sample was studied using single-crystal X-ray diffraction (XRD), infrared spectroscopy (FT-IR), liquid and solid-state 1H and 13C nuclear magnetic resonance (NMR) and quasielastic neutron scattering (QENS). The compound crystallized in the orthorhombic Pbca space group. The experimental methods were supported by theoretical calculations, density functional theory (plane-wave DFT) and molecular dynamics simulations (MD) methods. Combining several experimental and simulation techniques allowed the detailed analysis of molecular reorientations and provided a consistent picture of the molecular dynamics. The internal molecular mobility of the studied compound can be associated with the reorientational dynamics of four methyl groups. Interestingly, a large diversity of the energy barriers was observed - one methyl group reoriented across low activation barriers (∼3 kJ mol-1), while three methyl groups exhibited a high activation energy (10-14 kJ mol-1) and they are characterised by very different correlation times differing by almost two orders of magnitude at room temperature. The intramolecular interactions mainly influence the activation barriers.

6.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446877

RESUMO

Ferrocene is useful in modern organometallic chemistry due to its versatile applications in material sciences, catalysis, medicinal chemistry, and diagnostic applications. The ferrocene moiety can potentially serve many purposes in therapeutics and diagnostics. In the course of this study, (6-bromo-1-oxohexyl)ferrocene was combined with dimercaptomaleonitrile sodium salt to yield a novel maleonitrile derivative. Subsequently, this compound was subjected to an autocyclotetramerization reaction using the Linstead conditions in order to obtain an octaferrocenyl-substituted magnesium(II) sulfanyl porphyrazine. Following that, both compounds-the maleonitrile derivative and the porphyrazine derivative-were subjected to physicochemical characterization using UV-Vis, ES-TOF, MALDI-TOF, and one-dimensional and two-dimensional NMR spectroscopy. Moreover, the sulfanyl porphyrazine was subjected to various photophysical studies, including optical absorption and emission measurements, as well as the evaluation of its photochemical properties. Values of singlet oxygen generation quantum yields were obtained in different organic solvents. The electrochemical properties of the synthesized compounds were studied using cyclic voltammetry. According to the electrochemical results, the presence of electron-withdrawing oxohexyl groups attached to ferrocene afforded significantly more positive oxidation potentials of the ferrocene-based redox process up to 0.34 V vs. Fc+/Fc.


Assuntos
Oxigênio Singlete , Metalocenos , Oxirredução , Oxigênio Singlete/química , Solventes
7.
Food Chem ; 414: 135641, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36809729

RESUMO

Atriplex hortensis var. rubra L. extracts prepared from leaves, seeds with sheaths, and stems were characterized for betalainic profiles by spectrophotometry, LC-DAD-ESI-MS/MS and LC-Orbitrap-MS techniques. The presence of 12 betacyanins in the extracts was strongly correlated with high antioxidant activity measured by ABTS, FRAP, and ORAC assays. Comparative assessment between samples indicated the highest potential for celosianin and amaranthin (IC50 21.5 and 32.2 µg/ml, respectively). The chemical structure of celosianin was elucidated for the first time by complete 1D and 2D NMR analysis. Our findings also demonstrate that betalain-rich A. hortensis extracts and purified pigments (amaranthin and celosianin) do not induce cytotoxicity in a wide concentration range in rat cardiomyocytes model (up to 100 µg/ml for extracts and 1 mg/ml for pigments). Furthermore, tested samples effectively protect H9c2 cells from H2O2-induced cell death and prevent from apoptosis induced by Paclitaxel. The effects were observed at sample concentrations between 0.1 and 10 µg/ml.


Assuntos
Atriplex , Betalaínas , Animais , Ratos , Betalaínas/farmacologia , Betalaínas/química , Antioxidantes/química , Espectrometria de Massas em Tandem , Peróxido de Hidrogênio , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674983

RESUMO

Curcumin has been modified in various ways to broaden its application in medicine and address its limitations. In this study, we present a series of curcumin-based derivatives obtained by replacing the hydroxy groups in the feruloyl moiety with polyethylene glycol (PEG) chains and the addition of the BF2 moiety to the carbonyl groups. Tested compounds were screened for their cytotoxic activity toward two bladder cancer cell lines, 5637 and SCaBER, and a noncancerous cell line derived from lung fibroblasts (MRC-5). Cell viability was analyzed under normoxic and hypoxic conditions (1% oxygen). Structure-activity relationships (SARs) are discussed, and curcumin derivatives equipped within feruloyl moieties with 3-methoxy and 4-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy} substituents (5) were selected for further analysis. Compound 5 did not affect the viability of MRC-5 cells and exerted a stronger cytotoxic effect under hypoxic conditions. However, the flow cytometry studies showed that PEGylation did not improve cellular uptake. Another observation was that the lack of serum proteins limits the intracellular uptake of curcumin derivative 5. The preliminary mechanism of action studies indicated that compound 5 under hypoxic conditions induced G2/M arrest in a dose-dependent manner and increased the expression of stress-related proteins such as p21/CIP1, phosphorylated HSP27, ADAMTS-1, and phosphorylated JNK. In summary, the results of the studies indicated that PEGylated curcumin is a more potent compound against bladder cancer cell lines than the parent compound, and derivative 5 is worthy of further investigation to clarify its mechanism of anticancer action under hypoxic conditions.


Assuntos
Antineoplásicos , Curcumina , Neoplasias da Bexiga Urinária , Humanos , Curcumina/farmacologia , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Antineoplásicos/farmacologia , Relação Estrutura-Atividade
9.
Molecules ; 27(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558186

RESUMO

The influence of stabilizing activity of citric buffers on betacyanins, as well as their thermal dehydrogenation and decarboxylation in a beetroot betalain-rich extract (BRE), was studied at pH 3-8 and temperature 30, 50 and 85 °C with an additional effect of EDTA. In acetate/phosphate buffers, the highest stability is observed at pH 5 and it decreases toward pH 3 as well as pH 8, which is more remarkable at 85 °C. For the citrates, a contradictory effect was observed. Citric buffers tend to stabilize the substrate pigments and their intermediary products in acidic solutions, although increase their reactivity at pH 6-8. The highest impact of EDTA addition on pigment retention in acetate buffers is observed at 85 °C and pH 3-5 as well as 8, reflecting the preserving activity of EDTA at the most unfavorable conditions. At lower temperatures, pigment stability in more acidic conditions is still at higher levels even without addition of citrates or EDTA. The most striking effect on generation of betanin derivatives during heating is 2-decarboxylation which preferentially proceeds in the most acidic environment and this generation rate at 85 °C is much higher in the citrate buffers compared to acetates.


Assuntos
Beta vulgaris , Betalaínas , Betacianinas , Ácido Edético , Citratos , Descarboxilação , Cromatografia Líquida de Alta Pressão , Extratos Vegetais
10.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232545

RESUMO

Identification of betacyanins in Basella alba L. and Basella alba L. var. 'Rubra' fruits was performed by low- and high-resolution mass spectrometry (LRMS and HRMS) as well as 1H, 13C and two-dimensional NMR which revealed hitherto completely not known betacyanin classes in the plant kingdom. Especially, the presence of unique nitrogenous acyl moieties in the structures of the pigments was ascertained by the HRMS Orbitrap detection. Except for detected polar betacyanin glycosylated derivatives, presence of a series of previously not reported pigments such as malonylated betanidin 6-O-ß-glusosides with their acyl migration isomers along with the evidence of the 3''-hydroxy-butyrylated betacyanins is reported. The first complete NMR data were obtained for novel and principal acylated gomphrenins with hydroxycinnamic acids: 6'-O-E-caffeoyl-gomphrenin (malabarin), 6'-O-E-sinapoyl-gomphrenin (gandolin), 6'-O-E-4-coumaroyl-gomphrenin (globosin) and 6'-O-E-feruloyl-gomphrenin (basellin).


Assuntos
Betacianinas , Caryophyllales , Betacianinas/química , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/análise , Frutas/química , Spinacia oleracea
11.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077451

RESUMO

This work presents the synthesis and characterization of metal-free, zinc (II), and cobalt (II) porphyrins substituted with short PEG chains. The synthesized compounds were characterized by UV-Vis, 1H and 13C NMR spectroscopy, and MALDI-TOF mass spectrometry. The origin of the absorption bands for tested compounds in the UV-Vis range was determined using a computational model based on the electron density functional theory (DFT) and its time-dependent variant (TD-DFT). The photosensitizing activity was evaluated by measuring the ability to generate singlet oxygen (ΦΔ), which reached values up to 0.54. The photodynamic activity was tested using bladder (5637), prostate (LNCaP), and melanoma (A375) cancer cell lines. In vitro experiments clearly showed the structure-activity relationship regarding types of substituents, their positions in the phenyl ring, and the variety of central metal ions on the porphyrin core. Notably, the metal-free derivative 3 and its zinc derivative 6 exerted strong cytotoxic activity toward 5637 cells, with IC50 values of 8 and 15 nM, respectively. None of the tested compounds induced a cytotoxic effect without irradiation. In conclusion, these results highlight the potential value of the tested compounds for PDT application.


Assuntos
Antineoplásicos , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Fotoquímica , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Porfirinas/química , Zinco/farmacologia
12.
Pharmaceutics ; 14(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015312

RESUMO

Due to the rapidly increasing problem of antibiotic resistance in recent years, the use of phthalocyanines as photosensitizers with their superior properties in photodynamic antimicrobial therapy (PACT) applications has become important. In this study, magnesium(II) 1,4,8,11,15,18,22,25-octakis(4-[4-butoxycarbonylphenoxy]butyloxy)phthalocyanine was used in the demetalation reaction in trifluoroacetic acid, and subsequently subjected to metalation reaction in dimethylformamide with zinc(II) acetate and bis(benzonitrile)palladium(II) chloride towards zinc(II) and palladium(II) derivatives. Three phthalocyanines, including a demetalated one as well as two metalated, in the core with zinc(II) and palladium(II) were characterized using 1D and 2D NMR spectroscopy and mass spectrometry. In addition, all macrocycles were subjected to absorption and emission studies as well as photostability tests. In a photochemical study, zinc(II) and palladium(II) phthalocyanine complexes appeared to be efficient singlet oxygen generators. There were noted quantum yields of singlet oxygen generation for zinc(II) phthalocyanine derivative in DMF and DMSO at 0.55 and 0.72, whereas for palladium(II) complex at 0.73 and 0.77, respectively. Liposomal formulations of phthalocyanine derivatives were prepared, and their activity was evaluated against a broad spectrum of antibiotic-resistant microorganisms, such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (ESBL+), Candida albicans resistant to fluconazole, C. auris, and against dermatophytes. Phthalocyanine palladium(II) complex showed the highest bactericidal activity against all antibiotic-resistant microorganisms, including reducing C. auris growth at 3.54 log.

13.
Molecules ; 27(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889282

RESUMO

A sulfanyl porphyrazine derivative with peripheral phthalimide moieties was metallated with cobalt(II) and iron(II) metal ions. The purity of the macrocycles was confirmed by HPLC, and subsequently, compounds were characterized using various analytical methods (ES-TOF, MALDI-TOF, UV-VIS, and NMR spectroscopy). To obtain hybrid electroactive electrode materials, novel porphyrazines were combined with multiwalled carbon nanotubes. The electrocatalytic effect derived from cobalt(II) and iron(II) cations was evaluated. As a result, a significant decrease in the overpotential was observed compared with that obtained with bare glassy carbon (GC) or glassy carbon electrode/carbon nanotubes (GC/MWCNTs), which allowed for sensitive determination of hydrogen peroxide in neutral conditions (pH 7.4). The prepared sensor enables a linear response to H2O2 concentrations of 1-90 µM. A low detection limit of 0.18 µM and a high sensitivity of 640 µA mM-1 cm-2 were obtained. These results indicate that the obtained sensors could potentially be applied in biomedical and environmental fields.


Assuntos
Nanotubos de Carbono , Cobalto/química , Técnicas Eletroquímicas/métodos , Eletrodos , Compostos Ferrosos , Peróxido de Hidrogênio/química , Nanotubos de Carbono/química , Ftalimidas
14.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163170

RESUMO

Betacyanins are a group of water-soluble red-violet compounds containing nitrogen in their structure. These are biosynthesized in red beetroot (Beta vulgaris L.), a widely consumed vegetable that contains significant amounts of nutritious and bioactive compounds which are also found in dietary supplements. This contribution presents results of betacyanin thermal oxidation (resulting in dehydrogenation) interrelated with decarboxylation in selected acetate/phosphate buffers at pH 3-8 and at 85 °C, which may be of particular significance for formulation and performance of foods. Most of the reaction products were detected at the highest concentrations in the acidic solutions (pH 3-4). The main dehydrogenation reaction pathways were monitored by LC-DAD-MS/MS and were associated with decarboxylation of the principal extract pigments, betanin/isobetanin and neobetanin, at carbon positions C-2 and C-17. Additional reactions are accompanied by the 2,15-decarboxylation processes at different dehydrogenation levels with 15-decarboxy-betanin and 2,15-bidecarboxy-betanin, structurally elucidated by NMR analysis, as the distinct indicators of this route type. For other novel pigments detected, 2,15-bidecarboxy-xanbetanin, 2,15-bidecarboxy-xanneobetanin and 2,15,17-tridecarboxy-neobetanin, additional high resolution mass spectrometric analyses were performed and confirmed their molecular formulas.


Assuntos
Beta vulgaris/química , Beta vulgaris/metabolismo , Betacianinas/metabolismo , Betacianinas/química , Betacianinas/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Descarboxilação , Temperatura Alta , Hidrogenação , Oxirredução , Extratos Vegetais/química , Espectrometria de Massas em Tandem/métodos , Verduras/química
15.
Pharmaceutics ; 13(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201532

RESUMO

Endometriosis is a gynecological disease defined by the presence of endometrial tissue outside the uterus. To date, the effective treatment of this disease is still based on invasive surgery or laparoscopy. Chelidonium majus L. (Papaveraceae) belongs to medicinal, latex-bearing plants. Extracts from the plant are a rich source of pharmacologically active agents. Protoberberine compounds derived from C. majus possess anticancer and antiproliferative activities. In the present study of a rat model of endometriosis, we investigated the influence of the plant protoberberine-rich fraction (BBR) obtained from the medicinal plant C. majus on the development of endometriosis. To understand of BBR therapeutic potential for endometriosis, metabolomics has been applied to study. BBR was prepared from an ethanolic extract of dry plants C. majus. Rats (n = 16) with confirmed endometriosis were treated with BBR administered orally (1 g/kg) for 14 days. Blood serum samples were collected from all of the animals and metabolites were studied using the NMR method. The metabolomic pattern was compared before and after the protoberberine treatment. The performed analysis showed significant changes in the concentrations of metabolites that are involved in energy homeostasis, including glucose, glutamine, and lactate. Histopathological studies showed no recurrence of endometriosis loci after treatment with BBR. The results of the study found that BBR treatment prevents the recurrence of endometriosis in rats. Moreover, metabolomics profiling can be applied to better understand the mechanisms of action of these protoberberine secondary plant metabolites. Our findings provide new insights into the pharmaceutical activity of natural protoberberine plant compounds.

16.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503808

RESUMO

Neutrophils produce hypochlorous acid (HOCl) as well as other reactive oxygen species as part of a natural innate immune response in the human body; however, excessive levels of HOCl can ultimately be detrimental to health. Recent reports suggest that betacyanin plant pigments can act as potent scavengers of inflammatory factors and are notably effective against HOCl. Comparison of the in vitro anti-hypochlorite activities of a novel betalain-rich red beetroot (Beta vulgaris L.) extract with its pure betalainic pigments revealed that the extract had the highest anti-hypochlorite activity, far exceeding the activity of all of the betalainic derivatives and selected reference antioxidants. This suggests that it may be an important food-based candidate for management of inflammatory conditions induced by excessive HOCl production. Among all pigments studied, betanidin exhibited the highest activity across the pH range.


Assuntos
Beta vulgaris/química , Betacianinas/química , Betalaínas/química , Corantes/química , Ácido Hipocloroso/química , Pigmentos Biológicos/química , Extratos Vegetais/química , Cromatografia Líquida , Humanos , Estrutura Molecular , Oxirredução , Hipoclorito de Sódio/química , Espectrometria de Massas por Ionização por Electrospray , Análise Espectral , Espectrometria de Massas em Tandem
17.
Bioorg Chem ; 96: 103634, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32044518

RESUMO

An important subgroup within the porphyrazine (Pz) family constitutes seco-porphyrazines, in the chemical structure of which one pyrrole unit is opened in the oxidative process. So far, there are only limited data on N-seco- and C-seco-Pzs. Here, the synthesis of a novel member of the Pzs seco-family, represented by an S-seco-tribenzoporphyrazine analogue, 22,23-bis(4-(3,5-dibutoxycarbonylphenoxy)butylsulfanyl)tribenzo[b,g,l]-22,23-dioxo-22,23-seco-porphyrazinato magnesium(II), is reported, with moderate 34% yield. The new derivative was characterized using NMR spectroscopy, UV-Vis spectroscopy, and mass spectrometry. In the photochemical study performed following the indirect chemical method with 1,3-diphenylisobenzofuran, S-seco-Pz revealed a high singlet oxygen quantum yield of 0.27 in DMF. Potential photocytotoxicity of S-seco-Pz was assessed in vitro on three cancer cell lines - two oral squamous cell carcinoma cell lines derived from the tongue (CAL 27, HSC-3) and human cervical epithelial adenocarcinoma cells (HeLa). In the biological study, the macrocycle was tested in its free form and after loading into liposomes. It is worth noting that S-seco-Pz was found to be non-toxic in the dark, with cell viability levels over 80%. The photocytotoxic IC50 values for free S-seco-Pz were 0.61, 0.18, and 4.1 µM for CAL 27, HSC-3 and HeLa cells, respectively. Four different liposomal compositions were analyzed, and the cationic liposomes revealed the highest photokilling efficacy, with the IC50 values for CAL 27, HSC-3, and HeLa cells at 0.24, 0.25, and 0.31 µM, respectively. The results of the photocytotoxicity study indicate that the new S-seco-tribenzoporphyrazine can be considered as a potential photosensitizer in photodynamic therapy of cancer, along with the developed cationic liposomal nanocarrier.


Assuntos
Metaloporfirinas/química , Metaloporfirinas/farmacologia , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Células HeLa , Humanos , Metaloporfirinas/síntese química , Neoplasias/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Oxigênio Singlete/metabolismo
18.
J Photochem Photobiol B ; 204: 111803, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32000112

RESUMO

Infectious diseases constitute a serious problem for human health and life. Although many bacterial and fungal infections can be successfully cured by commonly used antibiotics, a new threat emerges in the form of microbial resistance. For this reason, researchers try to find not only new active pharmaceutical ingredients for conventional antibiotherapy but also try to develop new strategies of microbial inactivation. Photodynamic antimicrobial chemotherapy, which relies on reactive oxygen species generated in situ in the presence of a photosensitizer and with the light of an appropriate wavelength, is one of them. Porphyrazines have been considered as potential photosensitizers for anticancer and antimicrobial photodynamic therapy. In this study, three tribenzoporphyrazines with dendrimeric peripheral substituents were subjected to in vitro antimicrobial photocytotoxicity study. One magnesium(II) tribenzoporphyrazine with peripheral 3,5-bis(3,5-dimethoxybenzyloxy)benzylsulfanyl substituents was synthesized and subjected to physicochemical characterization using NMR, UV-Vis, and mass spectrometry techniques. In photochemical studies this molecule revealed moderate singlet oxygen generation ability (ΦΔDMF = 0.12, ΦΔDMSO = 0.13). The other two magnesium(II) tribenzoporphyrazines applied in the biological study were 4-[3,5-di(hydroxymethyl)phenoxy]butylsulfanyl-substituted tribenzoporphyrazine and 4-[3,5-bis(benzyloxy)benzyloxy]phenyl-substituted tribenzopyrazinoporphyrazine. For the assessment, three microbial strains were chosen: Gram-positive bacteria Staphylococcus aureus ATCC 25923, Gram-negative bacteria Escherichia coli ATCC 25922, and fungal strain Candida albicans ATCC 10231. Very high activity against Staphylococcus aureus at low 10-6 M concentration was recorded for magnesium(II) tribenzoporphyrazines with peripheral 3,5-bis(3,5-dimethoxybenzyloxy)benzylsulfanyl and 4-[3,5-di(hydroxymethyl)phenoxy]butylsulfanyl substituents with calculated log reductions of 4.4 and 4.8, respectively. It is worth noting that magnesium(II) tribenzoporphyrazine with 4-[3,5-di(hydroxymethyl)phenoxy]butylsulfanyl substituents revealed also 3.2 log reduction in bacterial growth at the concentration 10-7 M.


Assuntos
Anti-Infecciosos/farmacologia , Dendrímeros/química , Pirazinas/química , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Candida albicans/efeitos dos fármacos , Candida albicans/efeitos da radiação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos da radiação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos da radiação , Luz , Testes de Sensibilidade Microbiana , Pirazinas/síntese química , Pirazinas/farmacologia , Oxigênio Singlete/metabolismo , Staphylococcus aureus/efeitos da radiação
19.
Molecules ; 25(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963358

RESUMO

Hypochlorous acid (HOCl) produced by neutrophils is a part of the natural innate immune response system in the human body, but excessive levels of HOCl can ultimately be detrimental to health. Recent reports suggest that betacyanin plant pigments can act as potent scavengers of inflammatory factors and are notably effective against HOCl. In this contribution, chlorination mechanism and position of the electrophilic substitution in betacyanins was studied by high-resolution mass spectrometry and further structural analyses by NMR techniques, which completed the identification of the chlorinated betacyanins. For the study on the influence of the position of decarboxylation on the chlorination mechanism, a comparison of the chlorination position between betanin as well as 17-, and 2,17-decarboxylated betanins was performed. The structural study confirmed that the chlorination position in betanin occurs within the dihydropyridinic moiety at carbon C-18. Therefore, out of the aqueous free chlorine equilibrium species: HOCl, OCl-, Cl2, and Cl2O, the most potent chlorinating agents are HOCl and Cl2O postulated previously and the attack of the Cl⁺ ion on the carbon C-18 with a cyclic intermediate version is considered.


Assuntos
Anti-Inflamatórios/farmacologia , Beta vulgaris/química , Betacianinas/química , Ácido Hipocloroso/farmacologia , Extratos Vegetais/farmacologia , Anti-Inflamatórios/química , Halogenação , Ácido Hipocloroso/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Extratos Vegetais/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Sci Rep ; 9(1): 16278, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700156

RESUMO

Pseudouridine (Ψ) is the most common chemical modification present in RNA. In general, Ψ increases the thermodynamic stability of RNA. However, the degree of stabilization depends on the sequence and structural context. To explain experimentally observed sequence dependence of the effect of Ψ on the thermodynamic stability of RNA duplexes, we investigated the structure, dynamics and hydration of RNA duplexes with an internal Ψ-A base pair in different nearest-neighbor sequence contexts. The structures of two RNA duplexes containing 5'-GΨC/3'-CAG and 5'-CΨG/3'-GAC motifs were determined using NMR spectroscopy. To gain insight into the effect of Ψ on duplex dynamics and hydration, we performed molecular dynamics (MD) simulations of RNA duplexes with 5'-GΨC/3'-CAG, 5'-CΨG/3'-GAC, 5'-AΨU/3'-UAA and 5'-UΨA/3'-AAU motifs and their unmodified counterparts. Our results showed a subtle impact from Ψ modification on the structure and dynamics of the RNA duplexes studied. The MD simulations confirmed the change in hydration pattern when U is replaced with Ψ. Quantum chemical calculations showed that the replacement of U with Ψ affected the intrinsic stacking energies at the base pair steps depending on the sequence context. The calculated intrinsic stacking energies help to explain the experimentally observed sequence dependent changes in the duplex stability from Ψ modification.


Assuntos
Adenosina/química , Pareamento de Bases , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Pseudouridina/química , RNA/química , Simulação de Dinâmica Molecular , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...