Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
mBio ; 13(1): e0257421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089059

RESUMO

Histoplasma capsulatum, a dimorphic fungal pathogen, is the most common cause of fungal respiratory infections in immunocompetent hosts. Histoplasma is endemic in the Ohio and Mississippi River Valleys in the United States and is also distributed worldwide. Previous studies have revealed at least eight clades, each specific to a geographic location: North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B), Eurasian, Netherlands, Australian and African, and an additional distinct lineage (H81) comprised of Panamanian isolates. Previously assembled Histoplasma genomes are highly fragmented, with the highly repetitive G217B (NAm 2) strain, which has been used for most whole-genome-scale transcriptome studies, assembled into over 250 contigs. In this study, we set out to fully assemble the repeat regions and characterize the large-scale genome architecture of Histoplasma species. We resequenced five Histoplasma strains (WU24 [NAm 1], G217B [NAm 2], H88 [African], G186AR [Panama], and G184AR [Panama]) using Oxford Nanopore Technologies long-read sequencing technology. Here, we report chromosomal-level assemblies for all five strains, which exhibit extensive synteny among the geographically distant Histoplasma isolates. The new assemblies revealed that RYP2, a major regulator of morphology and virulence, is duplicated in G186AR. In addition, we mapped previously generated transcriptome data sets onto the newly assembled chromosomes. Our analyses revealed that the expression of transposons and transposon-embedded genes are upregulated in yeast phase compared to mycelial phase in the G217B and H88 strains. This study provides an important resource for fungal researchers and further highlights the importance of chromosomal-level assemblies in analyzing high-throughput data sets. IMPORTANCE Histoplasma species are dimorphic fungi causing significant morbidity and mortality worldwide. These fungi grow as mold in the soil and as budding yeast within the human host. Histoplasma can be isolated from soil in diverse regions, including North America, South America, Africa, and Europe. Phylogenetically distinct species of Histoplasma have been isolated and sequenced. However, for the commonly used strains, genome assemblies have been fragmented, leading to underutilization of genome-scale data. This study provides chromosome-level assemblies of the commonly used Histoplasma strains using long-read sequencing technology. Comparative analysis of these genomes shows largely conserved gene order within the chromosomes. Mapping existing transcriptome data on these new assemblies reveals clustering of transcriptionally coregulated genes. The results of this study highlight the importance of obtaining chromosome-level assemblies in understanding the biology of human fungal pathogens.


Assuntos
Histoplasma , Micoses , Humanos , Sintenia , Austrália , Histoplasma/genética , Saccharomyces cerevisiae/genética , Cromossomos , Genoma Fúngico
2.
New Phytol ; 230(4): 1665-1679, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33521943

RESUMO

Demand for cannabidiol (CBD), the predominant cannabinoid in hemp (Cannabis sativa), has favored cultivars producing unprecedented quantities of CBD. We investigated the ancestry of a new cultivar and cannabinoid synthase genes in relation to cannabinoid inheritance. A nanopore-based assembly anchored to a high-resolution linkage map provided a chromosome-resolved genome for CBDRx, a potent CBD-type cultivar. We measured cannabinoid synthase expression by cDNA sequencing and conducted a population genetic analysis of diverse Cannabis accessions. Quantitative trait locus mapping of cannabinoids in a hemp × marijuana segregating population was also performed. Cannabinoid synthase paralogs are arranged in tandem arrays embedded in long terminal repeat retrotransposons on chromosome 7. Although CBDRx is predominantly of marijuana ancestry, the genome has cannabidiolic acid synthase (CBDAS) introgressed from hemp and lacks a complete sequence for tetrahydrocannabinolic acid synthase (THCAS). Three additional genomes, including one with complete THCAS, confirmed this genomic structure. Only cannabidiolic acid synthase (CBDAS) was expressed in CBD-type Cannabis, while both CBDAS and THCAS were expressed in a cultivar with an intermediate tetrahydrocannabinol (THC) : CBD ratio. Although variation among cannabinoid synthase loci might affect the THC : CBD ratio, variability among cultivars in overall cannabinoid content (potency) was also associated with other chromosomes.


Assuntos
Canabidiol , Canabinoides , Cannabis , Cannabis/genética , Mapeamento Cromossômico , Dronabinol
3.
BMC Biol ; 18(1): 155, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121486

RESUMO

BACKGROUND: CREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors potentially affecting expression of thousands of genes. Identifying specific domain functions for multi-domain proteins is essential to understand processes such as cognitive function and circadian clocks. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBPKIX/KIX mice with mutations that prevent phospho-CREB (Ser133) binding. RESULTS: We found that CBPKIX/KIX mice were impaired in long-term memory, but not learning acquisition or short-term memory for the Morris water maze. Using an unbiased analysis of gene expression in the dorsal hippocampus after training in the Morris water maze or contextual fear conditioning, we discovered dysregulation of CREB, CLOCK, and BMAL1 target genes and downregulation of circadian genes in CBPKIX/KIX mice. Given our finding that the CBP KIX domain was important for transcription of circadian genes, we profiled circadian activity and phase resetting in CBPKIX/KIX mice. CBPKIX/KIX mice exhibited delayed activity peaks after light offset and longer free-running periods in constant dark. Interestingly, CBPKIX/KIX mice displayed phase delays and advances in response to photic stimulation comparable to wildtype littermates. Thus, this work delineates site-specific regulation of the circadian clock by a multi-domain protein. CONCLUSIONS: These studies provide insight into the significance of the CBP KIX domain by defining targets of CBP transcriptional co-activation in memory and the role of the CBP KIX domain in vivo on circadian rhythms.


Assuntos
Proteína de Ligação a CREB/genética , Ritmo Circadiano/genética , Memória de Longo Prazo , Domínios Proteicos , Animais , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/metabolismo , Feminino , Masculino , Camundongos
4.
Mol Ther Nucleic Acids ; 19: 1399-1412, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32160709

RESUMO

Knockout of the memory suppressor gene histone deacetylase 2 (Hdac2) in mice elicits cognitive enhancement, and drugs that block HDAC2 have potential as therapeutics for disorders affecting memory. Currently available HDAC2 catalytic activity inhibitors are not fully isoform specific and have short half-lives. Antisense oligonucleotides (ASOs) are drugs that elicit extremely long-lasting, specific inhibition through base pairing with RNA targets. We utilized an ASO to reduce Hdac2 messenger RNA (mRNA) in mice and determined its longevity, specificity, and mechanism of repression. A single injection of the Hdac2-targeted ASO in the central nervous system produced persistent reduction in HDAC2 protein and Hdac2 mRNA levels for 16 weeks. It enhanced object location memory for 8 weeks. RNA sequencing (RNA-seq) analysis of brain tissues revealed that the repression was specific to Hdac2 relative to related Hdac isoforms, and Hdac2 reduction caused alterations in the expression of genes involved in extracellular signal-regulated kinase (ERK) and memory-associated immune signaling pathways. Hdac2-targeted ASOs also suppress a nonpolyadenylated Hdac2 regulatory RNA and elicit direct transcriptional suppression of the Hdac2 gene through stalling RNA polymerase II. These findings identify transcriptional suppression of the target gene as a novel mechanism of action of ASOs.

5.
JCI Insight ; 5(5)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32069266

RESUMO

Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of 2 classes of regulatory complexes: permissive coactivators and silencing corepressors. Much work has focused on coactivator complexes, but little is known about the corepressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the corepressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the postsynaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the metabotropic glutamate receptor 1α (mGluR1α) and mGluR5 dependence of long-term potentiation, and increases activation of ERK in the hippocampus after learning. Our studies define a critical role for corepressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.


Assuntos
Hipocampo/fisiologia , Proteínas de Arcabouço Homer/metabolismo , Plasticidade Neuronal/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais/fisiologia , Complexo Correpressor Histona Desacetilase e Sin3/fisiologia , Animais , Hipocampo/metabolismo , Camundongos , Camundongos Mutantes , Neurônios/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/genética
6.
Angew Chem Int Ed Engl ; 58(25): 8454-8457, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30995339

RESUMO

Kainic acid, the flagship member of the kainoid family of natural neurochemicals, is a widely used neuropharmacological agent that helped unravel the key role of ionotropic glutamate receptors, including the kainate receptor, in the central nervous system. Worldwide shortages of this seaweed natural product in the year 2000 prompted numerous chemical syntheses, including scalable preparations with as few as six-steps. Herein we report the discovery and characterization of the concise two-enzyme biosynthetic pathway to kainic acid from l-glutamic acid and dimethylallyl pyrophosphate in red macroalgae and show that the biosynthetic genes are co-clustered in genomes of Digenea simplex and Palmaria palmata. Moreover, we applied a key biosynthetic α-ketoglutarate-dependent dioxygenase enzyme in a biotransformation methodology to efficiently construct kainic acid on the gram scale. This study establishes both the feasibility of mining seaweed genomes for their biotechnological prowess.


Assuntos
Ácido Caínico/metabolismo , Rodófitas/química , Ácido Caínico/química , Estrutura Molecular , Rodófitas/metabolismo
7.
Sci Signal ; 11(513)2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339533

RESUMO

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder that is associated with genetic risk factors. Most human disease-associated single-nucleotide polymorphisms (SNPs) are not located in genes but rather are in regulatory regions that control gene expression. The function of regulatory regions is determined through epigenetic mechanisms. Parallels between the cellular basis of development and the formation of long-term memory have long been recognized, particularly the role of epigenetic mechanisms in both processes. We analyzed how learning alters chromatin accessibility in the mouse hippocampus using a new high-throughput sequencing bioinformatics strategy we call DEScan (differential enrichment scan). DEScan, which enabled the analysis of data from epigenomic experiments containing multiple replicates, revealed changes in chromatin accessibility at 2365 regulatory regions-most of which were promoters. Learning-regulated promoters were active during forebrain development in mice and were enriched in epigenetic modifications indicative of bivalent promoters. These promoters were disproportionally intronic, showed a complex relationship with gene expression and alternative splicing during memory consolidation and retrieval, and were enriched in the data set relative to known ASD risk genes. Genotyping in a clinical cohort within one of these promoters (SHANK3 promoter 6) revealed that the SNP rs6010065 was associated with ASD. Our data support the idea that learning recapitulates development at the epigenetic level and demonstrate that behaviorally induced epigenetic changes in mice can highlight regulatory regions relevant to brain disorders in patients.


Assuntos
Transtorno Autístico/genética , Montagem e Desmontagem da Cromatina , Hipocampo/metabolismo , Aprendizagem , RNA não Traduzido/genética , Sequências Reguladoras de Ácido Nucleico , Adolescente , Processamento Alternativo , Animais , Transtorno Autístico/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
8.
Elife ; 62017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28927503

RESUMO

Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-ß receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Aprendizagem , Memória , Proteínas de Ligação a RNA/metabolismo , Ribonucleases/metabolismo , Animais , Hipocampo/fisiologia , Camundongos , Plasticidade Neuronal
9.
Elife ; 52016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549340

RESUMO

Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density.


Assuntos
Região CA1 Hipocampal/fisiologia , Transtornos da Memória , Neurônios/fisiologia , Privação do Sono/complicações , Fatores de Despolimerização de Actina/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Espinhas Dendríticas/fisiologia , Camundongos , Neurônios/citologia
10.
Neurobiol Learn Mem ; 134 Pt B: 221-35, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27451143

RESUMO

The process of memory consolidation requires transcription and translation to form long-term memories. Significant effort has been dedicated to understanding changes in hippocampal gene expression after contextual fear conditioning. However, alternative splicing by differential transcript regulation during this time period has received less attention. Here, we use RNA-seq to determine exon-level changes in expression after contextual fear conditioning and retrieval. Our work reveals that a short variant of Homer1, Ania-3, is regulated by contextual fear conditioning. The ribosome biogenesis regulator Las1l, small nucleolar RNA Snord14e, and the RNA-binding protein Rbm3 also change specific transcript usage after fear conditioning. The changes in Ania-3 and Las1l are specific to either the new context or the context-shock association, while the changes in Rbm3 occur after context or shock only. Our analysis revealed novel transcript regulation of previously undetected changes after learning, revealing the importance of high throughput sequencing approaches in the study of gene expression changes after learning.


Assuntos
Processamento Alternativo/genética , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Expressão Gênica/genética , Hipocampo/metabolismo , Proteínas de Arcabouço Homer/genética , Animais , Medo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas , Análise de Sequência de RNA
11.
Sci Signal ; 9(425): ra41, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27117251

RESUMO

Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transtornos da Memória/metabolismo , Biossíntese de Proteínas , Privação do Sono/metabolismo , Animais , Western Blotting , Cognição , Proteínas do Citoesqueleto/metabolismo , Chaperona BiP do Retículo Endoplasmático , Ensaio de Imunoadsorção Enzimática , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Proteínas de Choque Térmico/metabolismo , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fosforilação , Puromicina/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas
12.
Front Mol Neurosci ; 9: 11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26903803

RESUMO

The consolidation of short-term labile memories for long-term storage requires transcription and there is growing interest in defining the epigenetic mechanisms regulating these transcriptional events. In particular, it has been hypothesized that combinations of histone post-translational modifications (PTMs) have the potential to store memory by dynamically defining the transcriptional status of any given gene loci. Studying epigenetic phenomena during long-term memory consolidation, however, is complicated by the complex cellular heterogeneity of the brain, in which epigenetic signal from memory-relevant cells can be obscured or diluted by the surrounding milieu. To address this issue, we have developed a transgenic mouse line expressing a tetO-regulated, hemagglutinin (HA)-tagged histone H3.3 exclusively in excitatory neurons of the forebrain. Unlike canonical histones, histone H3.3 is incorporated at promoter regions of transcriptionally active genes in a DNA replication-independent manner, stably "barcoding" active regions of the genome in post-mitotic cells. Immunoprecipitating H3.3-HA containing nucleosomes from the hippocampus will therefore enrich for memory-relevant chromatin by isolating actively transcribed regions of the excitatory neuron genome. To evaluate the validity of using H3.3 "barcoding" to sort chromatin, we performed a molecular and behavioral characterization of the H3.3-HA transgenic mouse line. Expectedly, we find that H3.3-HA is incorporated preferentially at promoter regions of actively-transcribed neuronal genes and that expression can be effectively regulated by doxycycline. Additionally, H3.3-HA overexpression does not adversely affect exploratory or anxiety-related behaviors, nor does it affect spatial memory. Transgenic animals do, however, exhibit deficits in contextual memory and motor learning, revealing the importance of this histone isoform in the brain. Future studies in the H3.3-HA transgenic mouse line will define the combinatorial histone PTM landscape during spatial memory consolidation and will investigate the important contributions of histone H3.3 to the normal functioning of the brain.

13.
Nucleic Acids Res ; 43(16): 7664-74, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26202970

RESUMO

The sequencing of the full transcriptome (RNA-seq) has become the preferred choice for the measurement of genome-wide gene expression. Despite its widespread use, challenges remain in RNA-seq data analysis. One often-overlooked aspect is normalization. Despite the fact that a variety of factors or 'batch effects' can contribute unwanted variation to the data, commonly used RNA-seq normalization methods only correct for sequencing depth. The study of gene expression is particularly problematic when it is influenced simultaneously by a variety of biological factors in addition to the one of interest. Using examples from experimental neuroscience, we show that batch effects can dominate the signal of interest; and that the choice of normalization method affects the power and reproducibility of the results. While commonly used global normalization methods are not able to adequately normalize the data, more recently developed RNA-seq normalization can. We focus on one particular method, RUVSeq and show that it is able to increase power and biological insight of the results. Finally, we provide a tutorial outlining the implementation of RUVSeq normalization that is applicable to a broad range of studies as well as meta-analysis of publicly available data.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Animais , Variação Genética , Masculino , Camundongos Endogâmicos C57BL , Neurociências/métodos , Reprodutibilidade dos Testes
14.
BMC Genomics ; 16 Suppl 5: S5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26040834

RESUMO

BACKGROUND: A fundamental question in neuroscience is how memories are stored and retrieved in the brain. Long-term memory formation requires transcription, translation and epigenetic processes that control gene expression. Thus, characterizing genome-wide the transcriptional changes that occur after memory acquisition and retrieval is of broad interest and importance. Genome-wide technologies are commonly used to interrogate transcriptional changes in discovery-based approaches. Their ability to increase scientific insight beyond traditional candidate gene approaches, however, is usually hindered by batch effects and other sources of unwanted variation, which are particularly hard to control in the study of brain and behavior. RESULTS: We examined genome-wide gene expression after contextual conditioning in the mouse hippocampus, a brain region essential for learning and memory, at all the time-points in which inhibiting transcription has been shown to impair memory formation. We show that most of the variance in gene expression is not due to conditioning and that by removing unwanted variance through additional normalization we are able provide novel biological insights. In particular, we show that genes downregulated by memory acquisition and retrieval impact different functions: chromatin assembly and RNA processing, respectively. Levels of histone 2A variant H2AB are reduced only following acquisition, a finding we confirmed using quantitative proteomics. On the other hand, splicing factor Rbfox1 and NMDA receptor-dependent microRNA miR-219 are only downregulated after retrieval, accompanied by an increase in protein levels of miR-219 target CAMKIIγ. CONCLUSIONS: We provide a thorough characterization of coding and non-coding gene expression during long-term memory formation. We demonstrate that unwanted variance dominates the signal in transcriptional studies of learning and memory and introduce the removal of unwanted variance through normalization as a necessary step for the analysis of genome-wide transcriptional studies in the context of brain and behavior. We show for the first time that histone variants are downregulated after memory acquisition, and splicing factors and microRNAs after memory retrieval. Our results provide mechanistic insights into the molecular basis of cognition by highlighting the differential involvement of epigenetic mechanisms, such as histone variants and post-transcriptional RNA regulation, after acquisition and retrieval of memory.


Assuntos
Epigênese Genética/fisiologia , Hipocampo/fisiologia , Histonas/genética , Memória de Longo Prazo/fisiologia , MicroRNAs/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Condicionamento Psicológico/fisiologia , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética , Transcrição Gênica/genética
15.
Dialogues Clin Neurosci ; 16(3): 273-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25364279

RESUMO

Epigenetics, broadly defined as the regulation of gene expression without alteration of the genome, has become a field of tremendous interest in neuroscience, neurology, and psychiatry. This research has rapidly changed the way researchers think about brain function. Exciting epigenetic discoveries have been found in addiction, early life stress, neurodegeneration, post-traumatic stress disorder, and depression. As researchers more precisely define the epigenetic landscape that regulates disease progression in each of these cases, therapeutics can be designed to specifically target the molecules that mediate these epigenetic processes. Further, epigenetics may lead, to the identification of novel biomarkers for diagnosis and for the monitoring of treatment. Epigenetic profiling is likely to become a routine tool for the diagnosis of neurological and psychiatric disorders in the near future.


Assuntos
Medicina Clínica , Epigenômica , Regulação da Expressão Gênica/fisiologia , Neurociências , Humanos
16.
Neurobiol Learn Mem ; 116: 90-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25242102

RESUMO

Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Transcrição Gênica , Animais , Regulação da Expressão Gênica , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
17.
J Clin Invest ; 122(10): 3593-602, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22996661

RESUMO

The formation of a long-lasting memory requires a transcription-dependent consolidation period that converts a short-term memory into a long-term memory. Nuclear receptors compose a class of transcription factors that regulate diverse biological processes, and several nuclear receptors have been implicated in memory formation. Here, we examined the potential contribution of nuclear receptors to memory consolidation by measuring the expression of all 49 murine nuclear receptors after learning. We identified 13 nuclear receptors with increased expression after learning, including all 3 members of the Nr4a subfamily. These CREB-regulated Nr4a genes encode ligand-independent "orphan" nuclear receptors. We found that blocking NR4A activity in memory-supporting brain regions impaired long-term memory but did not impact short-term memory in mice. Further, expression of Nr4a genes increased following the memory-enhancing effects of histone deacetylase (HDAC) inhibitors. Blocking NR4A signaling interfered with the ability of HDAC inhibitors to enhance memory. These results demonstrate that the Nr4a gene family contributes to memory formation and is a promising target for improving cognitive function.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Nootrópicos/farmacologia , Receptores Nucleares Órfãos/fisiologia , Fatores de Transcrição/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Eletrochoque , Medo/fisiologia , Reação de Congelamento Cataléptica/efeitos dos fármacos , Reação de Congelamento Cataléptica/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Dominantes , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/genética , Transtornos da Memória/prevenção & controle , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Nootrópicos/uso terapêutico , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Receptores Nucleares Órfãos/biossíntese , Receptores Nucleares Órfãos/genética , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Fatores de Transcrição/agonistas
18.
Learn Mem ; 19(8): 319-24, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22802593

RESUMO

Growth arrest and DNA damage-inducible ß (Gadd45b) has been shown to be involved in DNA demethylation and may be important for cognitive processes. Gadd45b is abnormally expressed in subjects with autism and psychosis, two disorders associated with cognitive deficits. Furthermore, several high-throughput screens have identified Gadd45b as a candidate plasticity-related gene. However, a direct demonstration of a link between Gadd45b and memory has not been established. The current studies first determined whether expression of the Gadd45 family of genes was affected by contextual fear conditioning. Gadd45b, and to a lesser extent Gadd45g, were up-regulated in the hippocampus following contextual fear conditioning, whereas Gadd45a was not. Next, Gadd45b knockout mice were tested for contextual and cued fear conditioning. Gadd45b knockout mice exhibited a significant deficit in long-term contextual fear conditioning; however, they displayed normal levels of short-term contextual fear conditioning. No differences between Gadd45b knockout and wild-type mice were observed in cued fear conditioning. Because cued fear conditioning is hippocampus independent, while contextual fear conditioning is hippocampus dependent, the current studies suggest that Gadd45b may be important for long-term hippocampus-dependent memory storage. Therefore, Gadd45b may be a novel therapeutic target for the cognitive deficits associated with many neurodevelopmental, neurological, and psychiatric disorders.


Assuntos
Antígenos de Diferenciação/genética , Hipocampo/fisiologia , Transtornos da Memória , Memória de Longo Prazo/fisiologia , Análise de Variância , Animais , Antígenos de Diferenciação/metabolismo , Condicionamento Psicológico/fisiologia , Eletrochoque/efeitos adversos , Medo/fisiologia , Regulação da Expressão Gênica/genética , Masculino , Transtornos da Memória/genética , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , RNA Mensageiro/metabolismo
19.
Neurobiol Aging ; 33(7): 1273-83, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21257234

RESUMO

Neuropathological features of Alzheimer's disease (AD) are recapitulated in transgenic mice expressing familial AD-causing mutations, but ectopic transgene overexpression makes it difficult to relate these abnormalities to disease pathogenesis. Alternatively, the APP/PS-1 double knock-in (DKI) mouse produces mutant amyloid precursor protein (APP) and presenilin-1 (PS-1) with normal levels and regulatory controls. Here, we investigated effects of amyloid on brain structure and neuroplasticity by vaccinating DKI mice with amyloid-ß starting at 8 months of age. At 14 months, vaccination blocked cerebral amyloid deposition and its attendant microglial activation. Neuropil abnormalities were pronounced only within plaques, and included circumscribed loss and dysmorphology of axons, dendrites, terminals and spines. Blockade of amyloid deposition restored neuropil integrity. Amyloid removal did not rescue reductions in the hippocampal neural progenitor and neuroblast populations, but adding 1 month of voluntary exercise to amyloid-ß vaccination markedly stimulated hippocampal neurogenesis. These results identify amyloid-dependent and -independent structural changes in the DKI mouse model of AD. Combining exercise with amyloid-directed immunotherapy produces greater restoration of brain structure and neuroplasticity than is achieved with either maneuver alone.


Assuntos
Peptídeos beta-Amiloides/uso terapêutico , Encéfalo/patologia , Condicionamento Físico Animal/tendências , Placa Amiloide/patologia , Placa Amiloide/prevenção & controle , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/efeitos dos fármacos , Terapia Combinada , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/métodos , Placa Amiloide/genética , Presenilina-1/genética
20.
J Am Chem Soc ; 130(33): 11185-94, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18652457

RESUMO

Herein is described the identification of RNA internal loops that bind to derivatives of neomycin B, neamine, tobramycin, and kanamycin A. RNA loop-ligand partners were identified by a two-dimensional combinatorial screening (2DCS) platform that probes RNA and chemical spaces simultaneously. In 2DCS, an aminoglycoside library immobilized onto an agarose microarray was probed for binding to a 3 x 3 nucleotide RNA internal loop library (81,920 interactions probed in duplicate in a single experiment). RNAs that bound aminoglycosides were harvested from the array via gel excision. RNA internal loop preferences for three aminoglycosides were identified from statistical analysis of selected structures. This provides consensus RNA internal loops that bind these structures and include: loops with potential GA pairs for the neomycin derivative, loops with potential GG pairs for the tobramycin derivative, and pyrimidine-rich loops for the kanamycin A derivative. Results with the neamine derivative show that it binds a variety of loops, including loops that contain potential GA pairs that also recognize the neomycin B derivative. All studied selected internal loops are specific for the aminoglycoside that they were selected to bind. Specificity was quantified for 16 selected internal loops by studying their binding to each of the arrayed aminoglycosides. Specificities ranged from 2- to 80-fold with an average specificity of 20-fold. These studies show that 2DCS is a unique platform to probe RNA and chemical space simultaneously to identify specific RNA motif-ligand interactions.


Assuntos
Aminoglicosídeos/química , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/química , Bibliotecas de Moléculas Pequenas , Alcinos/química , Aminoglicosídeos/síntese química , Azidas/química , Pareamento de Bases , Configuração de Carboidratos , Técnicas de Química Combinatória , Framicetina/química , Canamicina/química , Ligantes , Conformação de Ácido Nucleico , Oligonucleotídeos/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tobramicina/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...