Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 11(21): 10320-10328, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31106790

RESUMO

Precise localization and biophysical characterization of cellular structures is a key to the understanding of biological processes happening both inside the cell and at the cell surface. Atomic force microscopy is a powerful tool to study the cell surface - topography, elasticity, viscosity, interactions - and also the viscoelastic behavior of the underlying cytoplasm, cytoskeleton or the nucleus. Here, we demonstrate the ability of atomic force microscopy to also map and characterize organelles and microorganisms inside cells, at the nanoscale, by combining stiffness tomography with super-resolution fluorescence and electron microscopy. By using this correlative approach, we could both identify and characterize intracellular compartments. The validation of this approach was performed by monitoring the stiffening effect according to the metabolic status of the mitochondria in living cells in real-time.


Assuntos
Membrana Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Citoplasma/ultraestrutura , Microscopia de Força Atômica , Microtúbulos/ultraestrutura , Elasticidade , Células HeLa , Humanos , Viscosidade
2.
Biol Cell ; 111(3): 67-77, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30680759

RESUMO

BACKGROUND: Bacterial invasion covers two steps: adhesion and entry per se. The cell signalling response is triggered upon pathogen interaction at the cell surface. This response continues when the pathogen is internalised. It is likely that these two steps activate different molecular machineries. So far, it has not been possible to easily follow in physiological conditions these events separately. We thus developed an approach to uncouple adhesion from entry using atomic force microscopy (AFM)-driven force and fluorescence measurements. RESULTS: We report nanometric-scale, high-resolution, functional dynamic measurements of bacterial interaction with the host cell surface using photonic and adhesion force analyses. We describe how to achieve a precise monitoring of iterative cell-bacterium interactions to analyse host cell signalling responses to infection. By applying this method to Yersinia pseudotuberculosis, we first unveil glycosylphosphatidylinositol-anchored protein domains recruitment to the bacterium cell surface binding site and concomitant cytoskeleton rearrangements using super-resolution fluorescence microscopy. Second, we demonstrate the feasibility of monitoring post-translationally modified proteins, for example, via ubiquitylation, during the first step of infection. CONCLUSION: We provide an approach to discriminate between cellular signalling response activated at the plasma membrane during host-pathogen interaction and that is triggered during the internalisation of the pathogen within the cell. SIGNIFICANCE: This approach adds to the technological arsenal to better understand and fight against pathogens and beyond the scope of microbiology to address conceptual issues of cell surface signalling.


Assuntos
Membrana Celular/metabolismo , Citosol/metabolismo , Yersinia pseudotuberculosis/metabolismo , Actinas/metabolismo , Adsorção , Sítios de Ligação , Adesão Celular , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Polimerização , Processamento de Proteína Pós-Traducional , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitinação
3.
EMBO Rep ; 19(1): 29-42, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141986

RESUMO

The interaction of Mycobacterium tuberculosis (Mtb) with pulmonary epithelial cells is critical for early stages of bacillus colonization and during the progression of tuberculosis. Entry of Mtb into epithelial cells has been shown to depend on F-actin polymerization, though the molecular mechanisms are still unclear. Here, we demonstrate that mycobacterial uptake into epithelial cells requires rearrangements of the actin cytoskeleton, which are regulated by ADP-ribosylation factor 1 (Arf1) and phospholipase D1 (PLD1), and is dependent on the M3 muscarinic receptor (M3R). We show that this pathway is controlled by Arf GTPase-activating protein 1 (ArfGAP1), as its silencing has an impact on actin cytoskeleton reorganization leading to uncontrolled uptake and replication of Mtb. Furthermore, we provide evidence that this pathway is critical for mycobacterial entry, while the cellular infection with other pathogens, such as Shigella flexneri and Yersinia pseudotuberculosis, is not affected. Altogether, these results reveal how cortical actin plays the role of a barrier to prevent mycobacterial entry into epithelial cells and indicate a novel role for ArfGAP1 as a restriction factor of host-pathogen interactions.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/genética , Proteínas Ativadoras de GTPase/genética , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/patogenicidade , Alvéolos Pulmonares/metabolismo , Células A549 , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Citoesqueleto de Actina/microbiologia , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Humanos , Mycobacterium tuberculosis/fisiologia , Fosfolipase D/genética , Fosfolipase D/metabolismo , Polimerização , Alvéolos Pulmonares/microbiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Shigella flexneri/fisiologia , Transdução de Sinais , Especificidade da Espécie , Yersinia pseudotuberculosis/fisiologia
4.
Nano Lett ; 15(10): 6349-56, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26418364

RESUMO

We demonstrate the relation between the optical blinking of colloidal semiconductor nanocrystals (NCs) and their electrical charge blinking for which we provide the first experimental observation of power-law statistics. To show this, we harness the performance of CdSe/ZnS NCs coupled with carbon nanotube field-effect transistors (CNTFETs), which act as single charge-sensitive electrometers with submillisecond time resolution, at room temperature. A random telegraph signal (RTS) associated with the NC single-trap charging is observed and exhibits power-law temporal statistics (τ(-α), with α in the range of ∼1-3), and a Lorentzian current noise power spectrum with a well-defined 1/f(2) corner. The spectroscopic analysis of the NC-CNTFET devices is consistent with the charging of NC defect states with a charging energy of Ec ≥ 200 meV. These results pave the way for a deeper understanding of the physics and technology of nanocrystal-based optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...